:: Volume 14, Issue 9 (November 2020) ::
Qom Univ Med Sci J 2020, 14(9): 1-15 Back to browse issues page
Identification of Chemical Compounds and Evaluation of Antioxidant and Antimicrobial Properties of Sage (Salvia officinalis L.) Essential Oil at Different Harvest Times
Zahra Izadi 1, Naser Mirazi2
1- Department of Horticulture, Faculty of Agriculture, Nahavand University , armaghan_iza_2004@yahoo.com
2- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University
Abstract:   (609 Views)
Background and Objectives: Today, the identification and introduction of plant species with medicinal and antimicrobial properties have become considerably important due to the increased use of chemical drugs, spread of microbial resistance to antibiotics, and side effects of drug consumption. Sage (Salvia officinalis L.) is one of the most important medicinal and aromatic plants possessing anticancer, antioxidant, and antimicrobial properties. The harvest time influences the effective combination of medicinal plants; therefore, the quantity and quality of plant essential oils vary in different times. This study was conducted to identify the essential oil compounds of sage shoots, as well as determining the best harvest time to obtain the highest amount of essential oil and phenolic compounds, as well as the antioxidant and antimicrobial properties of this essential oil against four gram-negative and gram-positive bacteria.
 
Methods: In this experimental study, plant samples were collected at four different times (mid- May, July, September, and November), followed by the extraction of their essential oils using the Clevenger type apparatus. The isolation and identification of the constituents of the essential oils were performed using gas chromatography and gas chromatography-mass spectrometry me connected to the mass spectrometer. The antioxidant activity of the samples’ essential oils was evaluated by the radical-scavenging activity of 2,2-diphenyl-1-picrylhydrazyl. The antimicrobial activity of the essential oils was determined by disc diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration methods. The collected data were analyzed in SPSS software (version 20) using ANOVA, as well as Duncanchr('39')s multiple range test to compare the mean scores.
 
Results: The major constituents identified in the essential oil of sage in different harvest times were α-pinene, camphene, α-thujone, β-thujone, 1.8-cineole, and camphor. Based on the results, oxygenated monoterpenes formed the major components of essential oil compounds in July (79.94%), May (74.76%), September (73.47%), and November (70.89%). The highest amount of phenolic compounds (66.36±0.74 mg GAE/g) and the lowest value of the half maximal inhibitory concentration (34.87±0.15 μg/ml) were observed in the essential oil obtained from July. At all harvest times, the highest and lowest diameters of the inhibition zone at the concentration of 300 mg/ml were observed for Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Moreover, the effect of sage essential oil on gram-positive bacteria was higher than on gram-negative bacteria. The MIC range of sage essential oil at different harvest times ranged from 16-256 mg/ml, depending on the type of bacteria (gram-positive or gram-negative).
 
Conclusion: The results of this study showed that sage can be used as a potential source for the production of pharmaceutical compounds and natural food preservatives. Overall, the best time to harvest sage is mid-July due to the highest antioxidant and antimicrobial activity of its essential oil during this period.
Keywords: Anti-infective agents, Chemical compounds, Essential oils, Salvia officinalis, Radical capacity
Full-Text [PDF 1667 kb]   (263 Downloads)    
Type of Study: Original Article | Subject: میکروب شناسی
Received: 2020/07/20 | Accepted: 2020/10/14 | Published: 2020/11/30
References
1. 1. Raissy M, Khamesipour F, Rahimi E, Khodadoostan A. Occurrence of Vibrio spp., Aeromonas hydrophila, Escherichia coli and Campylobacter spp. in crayfish (Astacus leptodactylus) from Iran. Iran J Fish Sci 2014;13(4):944-54. Link
2. Shahidi F, Tabatabaei Yazdi F, Roshanak S, Alizadeh Behbahani B, Vasiee A, Norouz N. Antimicrobial activity of Taraxacum pseudocalocephalum leaves extract on pathogenic microorganisms and comparison with common therapeutic antibiotics in vitro. Iran J Infect Dis Trop Med 2019;23(83):37-46. Link
3. Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 2012;3(12):1-24. PMID: 22291693 [DOI:10.3389/fmicb.2012.00012]
4. Moradi M, Hassani A, Sefidkon F, Maroofi H. Chemical composition of leaves and flowers essential oil of Origanum vulgare ssp. gracile growing wild in Iran. J Essent Oil Bear Plants 2015;18(1):242-7. Link [DOI:10.1080/0972060X.2014.884780]
5. Hosni K, Zahed N, Chrif R, Abid I, Medfei W, Kallel M, et al. Composition of peel essential oils from four selected Tunisian Citrus species: evidence for the genotypic influence. Food Chem 2010;123(4):1098-104. Link [DOI:10.1016/j.foodchem.2010.05.068]
6. Azizi Tabrizzad N, Seyedin Ardebili SM, Hojjati M. Investigation of chemical compounds and antibacterial activity of pennyroyal, mint and thyme essential oils. Food Sci Technol 2019;15(12):447-57. Link
7. Mahmodi R, Tajik H, Farshid AA, Ehsani A, Zaree P, Moradi M. Phytochemical properties of Mentha longifolia L. essential oil and its antimicrobial effects on Staphylococcus aureus. Armaghane Danesh 2011;16(5):400-12. Link
8. Boszormenyi A, Hethelyi E, Farkas A, Horvath G, Papp N, Lemberkovics E, et al. Chemical and genetic relationships among sage (Salvia officinalis L.) cultivars and judean sage (Salvia judaica Boiss.). J Agric Food Chem 2009;57(11):4663-7. PMID: 19449812 [DOI:10.1021/jf9005092]
9. Grdisa M, Jug-dujakovic M, Loncaric M, Carovic-Stanko K, Nincevic T, Liber Z, et al. Dalmatian Sage (Salvia officinalis L.): a review of biochemical contents, medical properties and genetic diversity. Agric Conspec Sci 2015;80(2):69-78. Link
10. Ghorbani A, Esmaeilzadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 2017;7(4):433-40. PMID: 29034191 [DOI:10.1016/j.jtcme.2016.12.014]
11. Nowak M, Kleinwächter M, Manderscheid R, Weigel HJ, Selmar D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Botany Food Qual 2010;83(2):133-6. Link
12. Kulak M, Gul F, Sekeroglu N. Changes in growth parameter and essential oil composition of sage (Salvia officinalis L.) leaves in response to various salt stresses. Ind Crops Prod 2020;145:1-15. Link [DOI:10.1016/j.indcrop.2019.112078]
13. Cegiełka A, Hać-Szymańczuk E, Piwowarek K, Dasiewicz K, Słowiński M, Wrońska K. The use of bioactive properties of sage preparations to improve the storage stability of low-pressure mechanically separated meat from chickens. Poult Sci 2019;98(10):5045-53. PMID: 31065702 [DOI:10.3382/ps/pez242]
14. Samania MR, Pirbalouti AG, Moattard F, Golparvare AR. L-Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.) leaves. Ind Crops Prod 2019;137:1-8. Link [DOI:10.1016/j.indcrop.2019.05.019]
15. Shaw JJ, Berbasova T, Sasaki T, Jefferson-George K, Spakowicz DJ, Dunican BF, et al. Identification of a fungal 1,8- cineole synthase from hypoxylon sp. with specificity determinants in common with the plant synthases. J Biol Chem 2015;290(13):511-26. PMID: 25648891 [DOI:10.1074/jbc.M114.636159]
16. Risaliti L, Kehagia A, Daoultzi E, Lazari D, Bergonzi MC, Vergkizi-Nikolakaki S, et al. Liposomes loaded with Salvia triloba and Rosmarinus officinalis essential oils: In vitro assessment of antioxidant, anti-inflammatory and antibacterial activities. J Drug Deliv Sci Technol 2019;51:493-8. Link [DOI:10.1016/j.jddst.2019.03.034]
17. Canzoneri M, Bruno M, Rosselli S, Russo A, Cardile V, Formisano C, et al. Chemical composition and biological activity of Salvia verbenaca essential oil. Nat Prod Commun 2011;6(7):102-6. PMID: 21834249 [DOI:10.1177/1934578X1100600725]
18. Behbahani BA, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J Food Measurem Charact 2017;11(2):847-63. Link [DOI:10.1007/s11694-016-9456-3]
19. Kozlowska M, Laudy AE, Przybyl J, Ziarno M, Majewska E. Chemical composition and antibacterial activity of some medicinal plants from Lamiaceae family. Acta Pol Pharm 2015;72(4):757-67. PMID: 26647633
20. El Euch SK, Hassine DB, Cazaux S, Bouzouita N, Bouajila J. Salvia officinalis essential oil: chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. South Afr J Botany 2019;120:253-60. Link [DOI:10.1016/j.sajb.2018.07.010]
21. Shen S, Chen D, Li X, Li T, Yuan M, Zhou Y, et al. Optimization of extraction process and antioxidant activity of poly saccharides from of Paris polyphylla. Carbohydr Polym 2014;104:80-6. Link [DOI:10.1016/j.carbpol.2014.01.006]
22. Alizadeh Behbahani B, Imani Fooladi AA. Evaluation of phytochemical analysis and antimicrobial activities Allium essential oil against the growth of some microbial pathogens. Microb Pathog 2018;114:299-303. PMID: 29196170 [DOI:10.1016/j.micpath.2017.11.055]
23. Reyes-Jurado F, Cervantes-Rincón T, Bach H, López-Malo A, Palou E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), thyme (Thymus vulgaris), and mustard (Brassica nigra) essential oils in gaseous phase. Ind Crops Prod 2019;131:90-5. Link [DOI:10.1016/j.indcrop.2019.01.036]
24. Mahmoodi SM, Akbarzade M. The effect of harvest time on essential oil content, yield and composition of spearmint (Mentha spicata L.) in the Hamidiyeh region. Plant Prod 2015;38(1):115-29. Link
25. Zheljazkov VD, Cantrell CL, Tekwani B, Khan SI. Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting. J Agric Food Chem 2008;56(2):380-5. PMID: 18095647 [DOI:10.1021/jf0725629]
26. Blank AF, Santana TC, Santos PS, Arrigoni-Blank MF, Prata AP, Jesus HC, et al. Chemical characterization of the essential oil from patchouli accessions harvested over four seasons. Ind Crops Prod 2011;34(1):831-7. Link [DOI:10.1016/j.indcrop.2011.01.021]
27. Oliveira Pinto JA, Fitzgerald Blank A, Lima Nogueira PC, Arrigoni-Blank MD, Matos Andrade T, Santos Sampaio T, et al. Chemical characterization of the essential oil from leaves of basil genotypes cultivated in different seasons. Bol Latinoam Caribe Plantas Med 2019;18(1):58-70. Link [DOI:10.35588/blacpma.19.18.1.05]
28. Russo A, Formisano C, Rigano D, Senatore F, Delfine S, Cardile V, et al. Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food Chem Toxicol 2013;55:42-7. PMID: 23291326 [DOI:10.1016/j.fct.2012.12.036]
29. Taarit MB, Msaada K, Hosni K, Hammami M, Kchouk ME, Marzouk B. Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind Crops Prod 2009;30(3):333-7. Link [DOI:10.1016/j.indcrop.2009.06.001]
30. Azizi, A, Khosravi K. Phytochemical study and antioxidant activity of essential oil of salvia multiculis vahl native to Iran, and its application in oxidative stability of sunflower oil. J Neyshabur Univ Med Sci 2019;6(4):46-61. Link
31. Oliveira GC, Vieira WL, Bertolli SC, Pacheco AC. Photosynthetic behavior, growth and essential oil production of Melissa officinalis L. cultivated under colored shade nets. Chil J Agric Res 2016;76(1):123-8. Link [DOI:10.4067/S0718-58392016000100017]
32. Mollaei S, Ebadi M, Hazrati S, Habibi B, Gholami F, Sourestani MM. Essential oil variation and antioxidant capacity of Mentha pulegium populations and their relation to ecological factors. Biochem Syst Ecol 2020;91:104048. Link [DOI:10.1016/j.bse.2020.104084]
33. Farhadi N, Babaei K, Farsaraei S, Moghaddam M, Ghasemi Pirbalouti A. Changes in essential oil compositions, total phenol, flavonoids andantioxidant capacity of Achillea millefoliumat different growth stages. Ind Crops Prod 2020;152:112570. Link [DOI:10.1016/j.indcrop.2020.112570]
34. Cutillas AB, Carrasco A, Martinez-Gutierrez R, Tomas V, Tudela J. Salvia officinalis L. essential oil from Spain: determination of composition, antioxidant capacity, antienzymatic and antimicrobial bioactivities. Chem Biodivers 2017;14:1-8. PMID: 28477412 [DOI:10.1002/cbdv.201700102]
35. Alizadeh Behbahani B, Tabatabaei Yazdi F, Vasiee A, Mortazavi SA. Oliveria decumbens essential oil: chemical compositions and antimicrobial activity against the growth of some clinical and standard strains causing infection. Microb Pathog 2018;114:449-52. PMID: 29241765 [DOI:10.1016/j.micpath.2017.12.033]
36. Abou Baker DH, Al-Moghazy M, ElSayeda AA. The in vitro cytotoxicity, antioxidant and antibacterial potential of Satureja hortensis L. essential oil cultivated in Egypt. Bioorg Chem 2020;95:103559. PMID: 31911310 [DOI:10.1016/j.bioorg.2019.103559]
37. Ahmadi E, Abdollahi A, Najafipour S, Meshkibaf MH, Fasihi Ramandi M, Namdar N, et al. Surveying the effect of the phenol compounds on antibacterial activity of herbal extracts: In vitro assessment of herbal extracts in Fasa-Fars province. J Fasa Univ Med Sci 2016;6(2):210-20. Link
38. Nikolic' M, Jovanovic' KK. Markovic' T, Markovic' D, Gligorijevic' N, Radulovic' S, et al. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Ind Crops Prod 2014;61:225-32. Link [DOI:10.1016/j.indcrop.2014.07.011]
39. Nezhadali A, Nabavi M, Rajabian M, Akbarpour M, Pourali P, Amini F. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Seuf Univ J Appl Sci 2014;3(2):87-92. Link [DOI:10.1016/j.bjbas.2014.05.001]
40. Šojić B, Pavlić B, Zeković Z, Tomović V, Ikonić P, Kocić-Tanackov S, et al. The effect of essential oil and extract from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the oxidative and microbiological stability of fresh pork sausages. LWT 2018;89:749-55. Link [DOI:10.1016/j.lwt.2017.11.055]
41. Moghimi R, Aliahmadi A, McClements DJ, Rafati H. Investigations of the effectiveness of nanoemulsions from sage oil as antibacterial agents on some food borne pathogens. LWT Food Sci Technol 2016;71:69-76. Link [DOI:10.1016/j.lwt.2016.03.018]
42. Yazgan H. Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent. LWT 2020;130:1-7. Link [DOI:10.1016/j.lwt.2020.109669]
43. Khedher MR, Khedher SB, Chaieb I, Tounsi S, Hammami M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. Excli J 2017;16:160-73. PMID: 28507464


XML   Persian Abstract   Print



Volume 14, Issue 9 (November 2020) Back to browse issues page