Volume 14, Issue 2 (April 2020)                   Qom Univ Med Sci J 2020, 14(2): 1-12 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehbashi M, Hojati Z, Motovali-bashi M, Ganjalikhani-Hakemi M. ‌RNA secondary structure and qRT-PCR analyses pertained to expressed anti-CD25 CAR in NK-92 cell line. Qom Univ Med Sci J 2020; 14 (2) :1-12
URL: http://journal.muq.ac.ir/article-1-2728-en.html
1- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran.
2- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran. , z.hojati@sci.ui.ac.ir
3- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Abstract:   (5083 Views)
Background and Objectives: Tumor-infiltrating regulatory T (TI-Treg) cells perform the significant function in cancer immune escape. In this study, the third generation CAR construct was designed against human CD25 antigen, the significant cell surface biomarker of TI-Tregs.
Methods: Initially, the construct of anti-CD25 CAR was designed. Using RNAfold web server, the RNA secondary structure was evaluated. Also, utilizing lentiviral vectors, NK-92 cell line was transduced. Afterward, the expression level of anti-CD25 CAR RNA was assessed by qRT-PCR in NK-92 cells transduced with CAR and mock transfer vectors and also untreated cells.
Results: The RNA secondary structure was stable. Also, the expression level of anti-CD25 CAR RNA in transduced NK-92 cells by pCDH-513B-1-anti-CD25 CAR transfer vector was significantly higher than transduced NK-92 cells by mock transfer vector and untreated cells (p˂0.0001).
Conclusion: The present study on anti-CD25 CAR RNA showed that this type of CAR transcripts were stable and expressed at high level. In fact, this type of CAR can be further studied in the future as a tool to remove the cancer immune escape in all types of solid and liquid cancers.
Full-Text [PDF 1260 kb]   (1027 Downloads)    
Type of Study: Original Article | Subject: ژنتیک
Received: 2020/01/25 | Accepted: 2020/05/11 | Published: 2020/05/30

References
1. Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochem Biophys Res Commun 1987;149(3):960-8. PMID: 3122749 [DOI:10.1016/0006-291X(87)90502-X]
2. Cheng J, Li L, Liu Y, Wang Z, Zhu X, Bai X. Interleukin-1α induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Mol Med Rep 2012;6(5):955-60. PMID: 22895682 [DOI:10.3892/mmr.2012.1019]
3. Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA package 2.0. Algorithm Mol Biol 2011;6(1):26. PMID: 22115189 [DOI:10.1186/1748-7188-6-26]
4. Klages N, Zufferey R, Trono D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2000;2(2):170-6. PMID: 10947945 [DOI:10.1006/mthe.2000.0103]
5. Kutner RH, Zhang XY, Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 2009;4(4):495-505. PMID: 19300443 [DOI:10.1038/nprot.2009.22]
6. Savan R, Chan T, Young, HA. Lentiviral gene transduction in human and mouse NK cell lines. Methods Mol Biol 2010;612:209-21. PMID: 20033643 [DOI:10.1007/978-1-60761-362-6_14]
7. Yang ZZ, Novak AJ, Stenson MJ, Witzig TE, Ansell SM. Intratumoral CD4+ CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma. Blood 2006;107(9):3639-46. PMID: 16403912 [DOI:10.1182/blood-2005-08-3376]
8. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 2009;58(3):449-59. PMID: 18791714 [DOI:10.1007/s00262-008-0583-5]
9. Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 2012;75(1):95-101. PMID: 21719142 [DOI:10.1016/j.lungcan.2011.06.002]
10. Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, et al. Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother 2015;64(4):419-27. PMID: 25555571 [DOI:10.1007/s00262-014-1651-7]
11. Tang Y, Xu X, Guo S, Zhang C, Tang Y, Tian Y, et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PLoS One 2014;9(3):e91551. PMID: 24637664 [DOI:10.1371/journal.pone.0091551]
12. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006;24(34):5373-80. PMID: 17135638 [DOI:10.1200/JCO.2006.05.9584]
13. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007;25(18):2586-93. PMID: 17577038 [DOI:10.1200/JCO.2006.09.4565]
14. Shah W, Yan X, Jing L, Zhou Y, Chen H, Wang Y. A reversed CD4/CD8 ratio of tumor-infiltrating lymphocytes and a high percentage of CD4(+)FOXP3(+) regulatory T cells are significantly associated with clinical outcome in squamous cell carcinoma of the cervix. Cell Mol Immunol 2011;8(1):59-66. PMID: 21200385 [DOI:10.1038/cmi.2010.56]
15. Liang YJ, Liu, HC, Su YX, Zhang TH, Chu M, Liang LZ, et al. Foxp3 expressed by tongue squamous cell carcinoma cells correlates with clinicopathologic features and overall survival in tongue squamous cell carcinoma patients. Oral Oncol 2011;47(7):566-70. PMID: 21641272 [DOI:10.1016/j.oraloncology.2011.04.017]
16. Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016;1(17):e89829. PMID: 27777979 [DOI:10.1172/jci.insight.89829]
17. Lin YC, Mahalingam J, Chiang JM, Su PJ, Chu YY, Lai HY, et al. Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer. Int J Cancer 2013;132(6):1341-50. PMID: 22907255 [DOI:10.1002/ijc.27784]
18. Zhou Q, Munger ME, Highfill SL, Tolar J, Weigel BJ, Riddle M, et al. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia. Blood 2010;116(14):2484-93. PMID: 20570856 [DOI:10.1182/blood-2010-03-275446]
19. Weiss L, Melchardt T, Egle A, Grabmer C, Greil R, Tinhofer I. Regulatory T cells predict the time to initial treatment in early stage chronic lymphocytic leukemia. Cancer 2011;117(10):2163-9. PMID: 21523729 [DOI:10.1002/cncr.25752]
20. Duell J, Dittrich M, Bedke T, Mueller T, Eisele F, Rosenwald A, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL. Leukemia 2017;31(10):2181-90. PMID: 28119525 [DOI:10.1038/leu.2017.41]
21. Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schlom J, et al. Enhanced functionality of CD4+ CD25highFoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 2008;14(4):1032-40. Link [DOI:10.1158/1078-0432.CCR-07-2056]
22. Liu L, Yao J, Ding Q, Huang S. CD4+ CD25 high regulatory cells in peripheral blood of NSCLC patients. J Huazhong Univ Sci Technolog Med Sci 2006;26(5):548-51. PMID: 17219964 [DOI:10.1007/s11596-006-0516-5]
23. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N, et al. CD4(+)CD25 high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 2006;55(9):1064-71. PMID: 16328385 [DOI:10.1007/s00262-005-0092-8]
24. Lim KP, Chun NA, Ismail SM, Abraham MT, Yusoff MN, Zain RB, et al. CD4+CD25hiCD127low regulatory T cells are increased in oral squamous cell carcinoma patients. PLoS One 2014;9(8):e103975. PMID: 25153698 [DOI:10.1371/journal.pone.0103975]
25. Niedźwiecki M, Budziło O, Zieliński M, Adamkiewicz-Drożyńska E, Maciejka-Kembłowska L, Szczepański T, et al. CD4+CD25highCD127low/- FoxP3+ regulatory T cell subpopulations in the bone marrow and peripheral blood of children with ALL: brief report. J Immunol Res 2018;2018:1292404. PMID: 30003111 [DOI:10.1155/2018/1292404]
26. Okita R, Saeki T, Takashima S, Yamaguchi Y, Toge T. CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep 2005;14(5):1269-73. PMID: 16211295 [DOI:10.3892/or.14.5.1269]
27. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res 1999;59(13):3128-33. PMID: 10397255
28. Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 1999;163(10):5211-8. PMID: 10553041

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb