دوره 15، شماره 1 - ( فروردین 1400 )                   جلد 15 شماره 1 صفحات 37-28 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه تخصصی فناوری های نوین آمل
2- دانشگاه تخصصی فناوری های نوین آمل ، ranjbarf@ausmt.ac.ir
چکیده:   (1778 مشاهده)
زمینه و هدف روش سنتز سبز نانوذرات به وسیله گیاهان به علت کم‌هزینه بودن و سازگاری با محیط زیست بسیار مورد توجه قرار گرفته است. در این مطالعه سنتز زیستی نـانو کامپوزیت آهن / نقره به وسیله عصاره گیـاه زولنگ و بررسی خصوصیات ضدقارچی آن گزارش شده است.
روش بررسی آنالیز نانوکامپوزیت تولیدی به وسیله دستگاه‌هایUV ،‌XRD و FESEMانجام گرفت و در ادامه فعالیت ضدقارچی نانوکامپوزیت با استفاده از روش دیسک دیفیوژن بر روی شش قارچ بررسی شد.
یافته‌ها طیف‌سنجی، پیک جذبی در 425 نانومتر را نشان می‌دهد که سنتز نانوکامپوزیت نقره / آهن را تأیید کرد. آنالیز XRD، ماهیت کریستالی نانوکامپوزیت نقره / آهن را تأیید کرد. آنالیز FESEM نشان داد که شکل نانوکامپوزیت نقره / آهن کروی و اندازه‌ نانوکامپوزیت شناسایی شده دارای رنجی از 26 تا 42 نانومتر است. فعالیت ضدقارچی نانوکامپوزیت نقره / آهن نشان داد که نانوکامپوزیت نقره / آهن در غلظت 150 میکروگرم بر میلی‌لیتر، بالاترین مهار را بر قارچ Cryptococcus neoformans در مقایسه با قارچ‌های Fusarium thapsinum، Candida albicans،Pyricularia oryzae ،Fusarium semitectum و Candida glabrata دارد.
نتیجه‌گیری نتایج این پژوهش نشان داد که نانوکامپوزیت آهن / نقره سنتز‌شده به وسیله عصاره آبی گیاه زولنگ که یک تکنیک جدید، غیر‌سمی، ساده، مقرون‌به‌صرفه، سریع و سازگار با محیط زیست است، دارای فعالیت ضدقارچی بالاست.
متن کامل [PDF 5617 kb]   (925 دریافت) |   |   متن کامل (HTML)  (811 مشاهده)  
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: علوم پایه
دریافت: 1399/9/24 | پذیرش: 1399/12/29 | انتشار: 1400/1/10

فهرست منابع
1. Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B Biointerfaces. 2013; 108:255-9. [DOI:10.1016/j.colsurfb.2013.03.017] [PMID] [DOI:10.1016/j.colsurfb.2013.03.017]
2. Maity D, Mollick MM, Mondal D, Bhowmick B, Bain MK, Bankura K, et al. Synthesis of methylcellulose-silver nanocomposite and investigation of mechanical and antimicrobial properties. Carbohydr Polym. 2012; 90(4):1818-25. [DOI:10.1016/j.carbpol.2012.07.082] [PMID] [DOI:10.1016/j.carbpol.2012.07.082]
3. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000; 52(4):662-8. [DOI:10.1002/1097-4636(20001215)52:43.0.CO;2-3] https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 [DOI:10.1002/1097-4636(20001215)52:43.0.CO;2-3]
4. Parashar UK, Saxena PS, Srivastava A. Bioinspired synthesis of silver nanoparticles. Dig J Nanomater Bios. 2009; 4(1):159-66. https://www.semanticscholar.org/paper/BIOINSPIRED-SYNTHESIS-OF-SILVER-NANOPARTICLES-Parashar-Saxena/055506648e99e562d7b5c3d2119dadae379e6534
5. Jalal M, Azam Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, et al. Anticandidal activity of biosynthesized silver nanoparticles: Effect on growth, cell morphology, and key virulence attributes of Candida species. Int J Nanomed. 2019; 14:4667-79. [DOI:10.2147/IJN.S210449] [PMID] [PMCID] [DOI:10.2147/IJN.S210449]
6. Giri SK, Das NN, Pradhan GC. Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids Surf A: Physicochem Eng Asp. 2011; 389(1-3):43-9. [DOI:10.1016/j.colsurfa.2011.08.052] [DOI:10.1016/j.colsurfa.2011.08.052]
7. Kumar A, Malik F, Bhushan S, Sethi VK, Shahi AK, Taneja SC, et al. An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells. Chem Biol Interact. 2008; 171(3):332-47. [DOI:10.1016/j.cbi.2007.10.003] [PMID] [DOI:10.1016/j.cbi.2007.10.003]
8. Pattanayak M, Nayak PL. Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachta indica (Neem). World J Nanosci Nanotechnol. 2013; 2(1):6-9. [DOI:10.5829/idosi.wjnst.2013.2.1.21132]
9. Elumalai K, Velmurugan S. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci. 2015; 345:329-36. [DOI:10.1016/j.apsusc.2015.03.176] [DOI:10.1016/j.apsusc.2015.03.176]
10. Khoshbakht K, Hammer K, Pistrick K. Eryngium caucasicum Trautv. cultivated as a vegetable in the Elburz Mountains (Northern Iran). Genet Resour Crop Ev. 2007; 54(2):445-8. [DOI:10.1007/s10722-006-9121-5] [DOI:10.1007/s10722-006-9121-5]
11. Ebrahimzadeh MA, Nabavi SF, Nabavi SM. Antioxidant activity of leaves and inflorescence of Eryngium caucasicum Trautv at flowering stage. Pharmacogn Res. 2009; 1(6):435-9. http://www.phcogres.com/text.asp?2009/1/6/435/58040
12. Dehghan Z, Ranjbar M, Govahi M. [Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity (Persian)]. Paper presented at: The International Conference on Medicinal Plant Organic Farming, Natural and Medicinal Materials. 13 March 2019; Amol University of Special Modern Technologies, Iran.https://civilica.com/doc/899425/
13. Nasar MQ, Khalil AT, Ali M, Shah M, Ayaz M, Shinwari ZK. Phytochemical analysis, Ephedra Procera CA Mey. Mediated green synthesis of silver nanoparticles, their cytotoxic and antimicrobial potentials. Medicina (Kaunas). 2019; 55(7):369. [DOI:10.3390/medicina55070369] [PMID] [PMCID] [DOI:10.3390/medicina55070369]
14. Muthuraman MS, Nithya S, Christena LR, Vadivel V, Subramanian NS, Anthony SP. Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb Pathog. 2019; 126:1-5. [DOI:10.1016/j.micpath.2018.10.024] [PMID] [DOI:10.1016/j.micpath.2018.10.024]
15. Kulkarni S, Jadhav M, Raikar P, Barretto DA, Vootla SK, Raikar US. Green synthesized multifunctional Ag@ Fe2O3 nanocomposites for effective antibacterial, antifungal and anticancer properties. New J Chem. 2017; 41(17):9513-20. [DOI:10.1039/C7NJ01849E] [DOI:10.1039/C7NJ01849E]
16. Atarod M, Nasrollahzadeh M, Sajadi SM. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J Colloid Interface Sci. 2016; 465:249-58. [DOI:10.1016/j.jcis.2015.11.060] [PMID] [DOI:10.1016/j.jcis.2015.11.060]
17. Devi HS, Boda MA, Shah MA, Parveen S, Wani AH. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synth. 2019; 8(1):38-45. [DOI:10.1515/gps-2017-0145] [DOI:10.1515/gps-2017-0145]
18. Sajjadi M, Nasrollahzadeh M, Sajadi SM. Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J Colloid Interface Sci. 2017; 497:1-3. [DOI:10.1016/j.jcis.2017.02.037] [PMID] [DOI:10.1016/j.jcis.2017.02.037]
19. Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011; 82(4):489-94. [DOI:10.1016/j.chemosphere.2010.10.023] [PMID] [DOI:10.1016/j.chemosphere.2010.10.023]
20. Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother. 2009; 53(8):3538-40. [DOI:10.1128/AAC.01106-08] [PMID] [PMCID] [DOI:10.1128/AAC.01106-08]
21. Jafari A, Ghane M, Arastoo S. Synergistic antibacterial effects of nano zinc oxide combined with silver nanocrystales. Afr J Microbiol Res. 2011; 5(30):5465-73. [DOI:10.5897/AJMR11.392] [DOI:10.5897/AJMR11.392]
22. Nielsen K, Cox GM, Litvintseva AP, Mylonakis E, Malliaris SD, Benjamin DK, et al. Cryptococcus neoformans α strains preferentially disseminate to the central nervous system during coinfection. Infect Immun. 2005; 73(8):4922-33. [DOI:10.1128/IAI.73.8.4922-4933.2005] [PMID] [PMCID] [DOI:10.1128/IAI.73.8.4922-4933.2005]
23. Alexander BD, Johnson MD, Pfeiffer CD, Jiménez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations Clin Infect Dis. 2013; 56(12):1724-32. [DOI:10.1093/cid/cit136] [PMID] [PMCID] [DOI:10.1093/cid/cit136]
24. Skamnioti P, Gurr SJ. Against the grain: Safeguarding rice from rice blast disease. Trends Biotechnol. 2009; 27(3):141-50. [DOI:10.1016/j.tibtech.2008.12.002] [PMID] [DOI:10.1016/j.tibtech.2008.12.002]
25. Suga H, Hyakumachi M. Genomics of phytopathogenic fusarium. Appl Mycol Biotechnol. 2004; 4:161-89. [DOI:10.1016/S1874-5334(04)80009-1] [DOI:10.1016/S1874-5334(04)80009-1]
26. Chang X, Li H, Naeem M, Wu X, Yong T, Song C, et al. Diversity of the seedborne fungi and pathogenicity of fusarium species associated with intercropped soybean. Pathogens. 2020; 9(7):531. [DOI:10.3390/pathogens9070531] [PMID] [PMCID] [DOI:10.3390/pathogens9070531]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.