Volume 15, Issue 3 (June 2021)                   Qom Univ Med Sci J 2021, 15(3): 222-229 | Back to browse issues page


XML Persian Abstract Print


1- 1. Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran 2. Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2- 3. Isfahan Fertility and Infertility Center, Isfahan, Iran 4. Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
3- 5. Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran , mforozanfar@yahoo.com
4- 4. Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
Abstract:   (1840 Views)
Background and Objective: Although proper morphology and motility of sperm can be one of the most important factors influencing male fertility, however, these parameters cannot play a decisive role in the health of sperm DNA. As a result, in addition to reducing the quality of sperm parameters in oligospermia individuals, sperm DNA damage or chromatin abnormalities of the sperm nucleus may also play a role in infertility. In this study, the relationship between sperm parameters and sperm DNA damage, and chromatin disorders of the sperm nucleus in oligospermia individuals was investigated.
Methods: This descriptive correlation study was performed on semen samples taken from 40 men with oligozoospermia. Thus, sperm parameters were evaluated. The fragmentation of sperm DNA, histone residue percentage, and sperm protamine deficiency were examined by SCD, aniline blue staining, and chromamycin A3 evaluation, respectively. FSH was assessed through blood samples from patients. Pearson correlation was used for correlation between the parameters. The significance level was considered P<0.05.
Results: In this study, there was a significant correlation between DNA fragmentation and FSH level. Also, chromatin deficiency disorders and DNA fragmentation showed a significant correlation. In addition, there was a significant correlation between excess histone and DNA fragmentation.
Conclusion: In oligospermia, DNA fragmentation is associated with sperm chromatin abnormalities and damage to their sperm DNA, and is a possible cause of infertility.
Full-Text [PDF 633 kb]   (503 Downloads)    
Type of Study: Original Article | Subject: بافت شناسی و جنین شناسی
Received: 2021/02/21 | Accepted: 2021/04/14 | Published: 2021/07/1

References
1. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: An updated review of literature. Arab J Urol. 2018; 16(1):35-43. [DOI:10.1016/j.aju.2017.11.001] [PMID] [DOI:10.1016/j.aju.2017.11.001]
2. Fainberg J, Kashanian JA. Recent advances in understanding and managing male infertility. F1000Res. 2019; 8(F1000 Faculty Rev):670. [DOI:10.12688/f1000research.17076.1] [PMID] [DOI:10.12688/f1000research.17076.1]
3. Menkveld R. Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen. Asian J Androl. 2010; 12(1):47-58. [DOI:10.1038/aja.2009.14] [PMID] [DOI:10.1038/aja.2009.14]
4. Ghieh F, Mitchell V, Mandon-Pepin B, Vialard F. Genetic defects in human azoospermia. Basic Clin Androl. 2019; 29:4. [DOI:10.1186/s12610-019-0086-6] [PMID] [DOI:10.1186/s12610-019-0086-6]
5. Deng M, Lin F, Zhou C, Chen Y, Xuan L, Wang H, et al. Determination of 27 amino acids' levels in seminal plasma of asthenospermia and oligospermia patients and diagnostic value analysis. J Pharm Biomed Anal. 2020; 184:113211. [DOI:10.1016/j.jpba.2020.113211] [PMID] [DOI:10.1016/j.jpba.2020.113211]
6. Santi D, Crépieux P, Reiter E, Spaggiari G, Brigante G, Casarini L, et al. Follicle-Stimulating Hormone (FSH) action on spermatogenesis: A focus on physiological and therapeutic roles. J Clin Med. 2020; 9(4):1014. [DOI:10.3390/jcm9041014] [PMID] [DOI:10.3390/jcm9041014]
7. Muratori M, Baldi E. Effects of FSH on sperm DNA fragmentation: Review of clinical studies and possible mechanisms of action. Front Endocrinol. 2018; 9:734. [DOI:10.3389/fendo.2018.00734] [PMID] [DOI:10.3389/fendo.2018.00734]
8. Behre HM. Clinical use of FSH in male infertility. Front Endocrinol. 2019; 10:322. [DOI:10.3389/fendo.2019.00322] [PMID] [DOI:10.3389/fendo.2019.00322]
9. Babu SR, Sadhnani MD, Swarna M, Padmavathi P, Reddy PP. Evaluation of FSH, LH and testosterone levels in different subgroups of infertile males. Indian J Clin Biochem. 2004; 19(1):45-9. [DOI:10.1007/BF02872388] [PMID] [DOI:10.1007/BF02872388]
10. Garolla A, Ghezzi M, Cosci I, Sartini B, Bottacin A, Engl B, et al. FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate. Endocrine. 2017; 56(2):416-25. [DOI:10.1007/s12020-016-1037-z] [PMID] [DOI:10.1007/s12020-016-1037-z]
11. Kim GY. What should be done for men with sperm DNA fragmentation? Clin Exp Reprod Med. 2018; 45(3):101-9. [DOI:10.5653/cerm.2018.45.3.101] [PMID] [DOI:10.5653/cerm.2018.45.3.101]
12. dos Santos Hamilton TR, D'Ávila Assumpção MEO. Sperm DNA fragmentation: Causes and identification. Zygote. 2020; 28(1):1-8. [DOI:10.1017/S0967199419000595] [PMID] [DOI:10.1017/S0967199419000595]
13. Liu T, Wang L, Chen H, Huang Y, Yang P, Ahmed N, et al. Molecular and cellular mechanisms of apoptosis during dissociated spermatogenesis. Front Physiol. 2017; 8:188. [DOI:10.3389/fphys.2017.00188] [PMID] [DOI:10.3389/fphys.2017.00188]
14. Oliver-Bonet M, Benet J, Sun F, Navarro J, Abad C, Liehr T, et al. Meiotic studies in two human reciprocal translocations and their association with spermatogenic failure. Hum Reprod. 2005; 20(3):683-8. [DOI:10.1093/humrep/deh654] [PMID] [DOI:10.1093/humrep/deh654]
15. Grootegoed JA, Siep M, Baarends WM. Molecular and cellular mechanisms in spermatogenesis. Best Pract Res Clin Endocrinol Metab. 2000; 14(3):331-43. [DOI:10.1053/beem.2000.0083] [PMID] [DOI:10.1053/beem.2000.0083]
16. Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol. 2018; 9:763. [DOI:10.3389/fendo.2018.00763] [PMID] [DOI:10.3389/fendo.2018.00763]
17. Younis Jahmani MAD. Human sperm chromatin condensation assessment using Raman spectroscopy and its impact on ICSI induced fertilization and embryonic development [PhD. dissertation]. Homburg: der Universität des Saarlandes; 2020. https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/30383
18. Han X, Wang Y, Wei J, Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J Hematol Oncol. 2019; 12:128. [DOI:10.1186/s13045-019-0813-7] [PMID] [DOI:10.1186/s13045-019-0813-7]
19. Ioannou D, Miller D, Griffin DK, Tempest HG. Impact of sperm DNA chromatin in the clinic. J Assist Reprod Genet. 2016; 33(2):157-66. [DOI:10.1007/s10815-015-0624-x] [PMID] [DOI:10.1007/s10815-015-0624-x]
20. Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 2004; 38(4):200-13. [DOI:10.1002/gene.20019] [DOI:10.1002/gene.20019]
21. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014; 1839(3):155-68. [DOI:10.1016/j.bbagrm.2013.08.004] [PMID] [DOI:10.1016/j.bbagrm.2013.08.004]
22. Boissonnas CC, Jouannet P, Jammes H. Epigenetic disorders and male subfertility. Fertil Steril. 2013; 99(3):624-31. [DOI:10.1016/j.fertnstert.2013.01.124] [PMID] [DOI:10.1016/j.fertnstert.2013.01.124]
23. Gou LT, Lim DH, Ma W, Aubol BE, Hao Y, Wang X, et al. Initiation of parental genome reprogramming in fertilized oocyte by splicing kinase SRPK1-catalyzed protamine phosphorylation. Cell. 2020; 180(6):1212-27.E14. [DOI:10.1016/j.cell.2020.02.020] [PMID] [DOI:10.1016/j.cell.2020.02.020]
24. Barratt CL, Aitken RJ, Björndahl L, Carrell DT, de Boer P, Kvist U, et al. Sperm DNA: Organization, protection and vulnerability: From basic science to clinical applications-a position report. Hum Reprod. 2010; 25(4):824-38. [DOI:10.1093/humrep/dep465] [PMID] [DOI:10.1093/humrep/dep465]
25. Mongioì LM, Condorelli RA, Alamo A, Cannarella R, Musso N, La Vignera S, et al. Follicle-stimulating hormone treatment and male idiopathic infertility: Effects on sperm parameters and oxidative stress indices according to FSHR c. 2039 A/G and c. -29 G/A Genotypes. J Clin Med. 2020; 9(6):1690. [DOI:10.3390/jcm9061690] [PMID] [DOI:10.3390/jcm9061690]
26. Akbari H, Saleh M, Heidari M H, Ghaffari Novin M, Azargashb E. [Evaluation of sperm parameters and chromatin abnormalities in male infertility using CASA and chromatin dispersion test (Persian)]. Res Med. 2013; 36(4):176-83. http://pejouhesh.sbmu.ac.ir/article-1-1090-en.html
27. Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011; 23(6):724-34. [DOI:10.1016/j.rbmo.2011.08.010] [PMID] [DOI:10.1016/j.rbmo.2011.08.010]
28. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006; 12(4):466-72. [DOI:10.1016/S1472-6483(10)62000-7] [PMID] [DOI:10.1016/S1472-6483(10)62000-7]
29. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine‐deficient human sperm. J Androl. 2005; 26(6):741-8. [DOI:10.2164/jandrol.05063] [PMID] [DOI:10.2164/jandrol.05063]
30. Navaeian Kalat E, Tavalaee M, Abasi H, Nasr Esfahani MH. [Comparison of sperm parameters and DNA integrity between fertile and varicocele individuals (Persian)]. J Cell Tissue. 2012; 3(2):171-7. http://jct.araku.ac.ir/article_1713.html
31. Zamani Rarani F, Golshan-Iranpour F, Dashti GR. Correlation between sperm motility and sperm chromatin/DNA damage before and after cryopreservation and the effect of folic acid and nicotinic acid on post-thaw sperm quality in normozoospermic men. Cell Tissue Bank. 2019; 20(3):367-78. [DOI:10.1007/s10561-019-09775-6] [PMID] [DOI:10.1007/s10561-019-09775-6]
32. Fernández JL, Cajigal D, López-Fernández C, Gosálvez J. Assessing sperm DNA fragmentation with the sperm chromatin dispersion test. In: Didenko V, editor. DNA Damage Detection In Situ, Ex Vivo, and In Vivo. Methods in Molecular Biology (Methods and Protocols). Vol 682. Totowa: Humana Press; 2011. pp. 291-301. [DOI:10.1007/978-1-60327-409-8_21] [DOI:10.1007/978-1-60327-409-8_21]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.