دوره 15، شماره 1 - ( فروردین 1400 )                   جلد 15 شماره 1 صفحات 9-2 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- مرکز تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی قم، قم، ایران. ، moslehi2000@gmail.com
2- مرکز تحقیقات سلولی و مولکولی، دانشگاه علوم پزشکی قم، قم، ایران.
چکیده:   (1546 مشاهده)
زمینه و هدف بیماری استئاتوهپاتیت غیرالکلی (NASH) یک اختلال جدی و رو به افزایش در سراسر جهان است که به صورت فیبروزکبدی، سیروز و کارسینوم هپاتوسلولار پیشرفت می‌کند. رزمارینیک اسید به عنوان یک ترکیب آنتی اکسیدان و ضد التهاب قوی شناخته می‌شود که اثرات مثبتی بر بهبود آسیب‌های کبدی دارد؛ این مطالعه جهت بررسی اثر رزمارینیک اسید روی فیبروز کبدی ایجاد‌شده در بیماری استئاتوهپاتیت غیرالکلی در موش‌های سوری انجام شد.
روش بررسی موش‌های سوری نر نژاد C57/BL6 به چهار گروه مساوی شامل کنترل، رزمارینیک اسید (RA) ،NASH و NASH+RA تقسیم شدند. در گروه‌های سه و چهار، استئاتوهپاتیت غیرالکلی با استفاده از رژیم غذایی فاقد متیونین و کولین و در طی هشت هفته القا شد. در گروه‌های RA و NASH+RA، حیوانات روزانه رزمارینیک اسید را به شکل داخل صفاقی دریافت کردند. پس از هشت هفته حیوانات کشته شده و نمونه خون و بافت کبد تهیه شد. سپس ارزیابی‌های بیوشیمیایی و مولکولی و رنگ‌آمیزی تری‌کروم ماسون جهت بررسی فیبروز کبدی انجام شد.
یافته‌ها پس از استفاده از رزمارینیک اسید سطوح سرمی(ALT) Alanine transaminase و (AST) Aspartate transaminase کاهش یافت. همچنین رزمارینیک اسید موجب کاهش بیان TGF-β و α-SMA شد و درنهایت ارزیابی‌های بافت‌شناسی نشان داد که استفاده از رزمارینیک اسید، فیبروز کبدی ایجاد‌شده به وسیله NASH را کاهش داد.
نتیجه‌گیری به نظر می‌رسد که استفاده از رزمارینیک اسید، فیبروز کبدی ایجاد‌شده در موش‌های مبتلا به استئاتوهپاتیت غیرالکلی را از طریق مهار مسیر سیگنالینگ α-SMA/ TGF-β بهبود می‌بخشد.
متن کامل [PDF 4735 kb]   (777 دریافت) |   |   متن کامل (HTML)  (721 مشاهده)  
نوع مطالعه: مقاله پژوهشي | موضوع مقاله: فیزیولوژی
دریافت: 1399/12/23 | پذیرش: 1400/1/31 | انتشار: 1400/1/10

فهرست منابع
1. Gottlieb A, Mosthael W, Sowa JP, Canbay A. Nonalcoholic-fatty-liver-disease and nonalcoholic steatohepatitis: Successful development of pharmacological treatment will depend on translational research. Digestion. 2019; 100(2):79-85. [DOI:10.1159/000493259] [PMID] [DOI:10.1159/000493259]
2. Wree A, Broderick L, Canbay A, Hoffman HM, Feldstein AE. From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat Rev Gastroenterol Hepatol. 2013; 10(11):627-36. [DOI:10.1038/nrgastro.2013.149] [PMID] [DOI:10.1038/nrgastro.2013.149]
3. Liu W, Baker RD, Bhatia T, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Liff Sci. 2016; 73(10):1969-87. [DOI:10.1007/s00018-016-2161-x] [PMID] [DOI:10.1007/s00018-016-2161-x]
4. Noureddin M, Mato JM, Lu SC. Nonalcoholic fatty liver disease: update on pathogenesis, diagnosis, treatment and the role of S-adenosylmethionine. Exp Biol Med (Maywood). 2015; 240(6):809-20. [DOI:10.1177/1535370215579161] [PMID] [PMCID] [DOI:10.1177/1535370215579161]
5. Anty R, Gual P. [Physiopathologie des stéatoses hépatiques métaboliques [Pathogenesis of non-alcoholic fatty liver disease (French)]. Presse Med. 2019; 48(12):1468-83. [DOI:10.1016/j.lpm.2019.09.051] [PMID] [DOI:10.1016/j.lpm.2019.09.051]
6. Takatani N, Kono Y, Beppu F, Okamatsu-Ogura Y, Yamano Y, Miyashita K, et al. Fucoxanthin inhibits hepatic oxidative stress, inflammation, and fibrosis in diet-induced nonalcoholic steatohepatitis model mice. Biochem Biophys Res Commun. 2020; 528(2):305-10. [DOI:10.1016/j.bbrc.2020.05.050] [PMID] [DOI:10.1016/j.bbrc.2020.05.050]
7. Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: Beyond steatosis and inflammation. Int J Mol Sci. 2014; 15(5):8591-638. [DOI:10.3390/ijms15058591] [PMID] [PMCID] [DOI:10.3390/ijms15058591]
8. Zhang CY, Yuan WG, He P, Lei JH, Wang CX. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 2016; 22(48):10512-22. [DOI:10.3748/wjg.v22.i48.10512] [PMID] [PMCID] [DOI:10.3748/wjg.v22.i48.10512]
9. Basaranoglu M, Basaranoglu G, Sentürk H. From fatty liver to fibrosis: A tale of "second hit". World J Gastroenterol 2013; 19(8):1158-65. [DOI:10.3748/wjg.v19.i8.1158] [PMID] [PMCID] [DOI:10.3748/wjg.v19.i8.1158]
10. Xu F, Liu C, Zhou D, Zhang L. TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J Histochem Cytochem. 2016; 64(3):157-67. [DOI:10.1369/0022155415627681] [PMID] [PMCID] [DOI:10.1369/0022155415627681]
11. Zhang L, Zhou F, ten Dijke P. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci. 2013; 38(12):612-20. [DOI:10.1016/j.tibs.2013.10.001] [PMID] [DOI:10.1016/j.tibs.2013.10.001]
12. Hernández-Aquino E, Muriel P. Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World J Gastroenterol. 2018; 24(16):1679-707. [DOI:10.3748/wjg.v24.i16.1679] [PMID] [PMCID] [DOI:10.3748/wjg.v24.i16.1679]
13. Dai J, Xu M, Zhang X, Niu Q, Hu Y, Li Y, et al. Bi-directional regulation of TGF-β/Smad pathway by arsenic: A systemic review and meta-analysis of in vivo and in vitro studies. Life Sci. 2019; 220:92-105. [DOI:10.1016/j.lfs.2019.01.042] [PMID] [DOI:10.1016/j.lfs.2019.01.042]
14. Hasanein P, Seifi R. Beneficial effects of rosmarinic acid against alcohol-induced hepatotoxicity in rats. Can J Physiol Pharmacol. 2018; 96(1):32-7. [DOI:10.1139/cjpp-2017-0135] [PMID] [DOI:10.1139/cjpp-2017-0135]
15. Diao J, Wei J, Yan R, Liu X, Li Q, Li L, et al. Rosmarinic Acid suppressed high glucose-induced apoptosis in H9c2 cells by ameliorating the mitochondrial function and activating STAT3. Biochem Biophys Res Commun. 2016; 477(4):1024-30. [DOI:10.1016/j.bbrc.2016.07.024] [PMID] [DOI:10.1016/j.bbrc.2016.07.024]
16. Zhang Y, Chen X, Yang L, Zu Y, Lu Q. Effects of rosmarinic acid on liver and kidney antioxidant enzymes, lipid peroxidation and tissue ultrastructure in aging mice. Food Funct. 2015; 6(3):927-31. [DOI:10.1039/C4FO01051E] [PMID] [DOI:10.1039/C4FO01051E]
17. Prasannarong M, Saengsirisuwan V, Surapongchai J, Buniam J, Chukijrungroat N, Rattanavichit Y. Rosmarinic acid improves hypertension and skeletal muscle glucose transport in angiotensin II-treated rats. BMC Complement Altern Med. 2019; 19(1):165. [DOI:10.1186/s12906-019-2579-4] [PMID] [PMCID] [DOI:10.1186/s12906-019-2579-4]
18. Ding Y, Zhang Z, Yue Z, Ding L, Zhou Y, Huanh Z, et al. Rosmarinic Acid Ameliorates H2O2-Induced Oxidative Stress in L02 Cells Through MAPK and Nrf2 Pathways. Rejuvenation Res. 2019; 22(4):289-98. [DOI:10.1089/rej.2018.2107] [PMID] [DOI:10.1089/rej.2018.2107]
19. Lu C, Zou Y, Liu Y, Niu Y. Rosmarinic acid counteracts activation of hepatic stellate cells via inhibiting the ROS-dependent MMP-2 activity: Involvement of Nrf2 antioxidant system. Toxicol Appl Pharmacol. 2017; 318:69-78. [DOI:10.1016/j.taap.2017.01.008] [PMID] [DOI:10.1016/j.taap.2017.01.008]
20. Joardar S, Dewanjee S, Bhowmick S, Dua TK, Das S, Saha A, et al. Rosmarinic Acid Attenuates Cadmium-Induced Nephrotoxicity via Inhibition of Oxidative Stress, Apoptosis, Inflammation and Fibrosis. Int J Mol Sci. 2019; 20(8):2027. [DOI:10.3390/ijms20082027] [PMID] [PMCID] [DOI:10.3390/ijms20082027]
21. Li GS, Jiang WL, Tian JW, Qu GW, Zhu HB, Fu FH. In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine. 2010; 17(3-4):282-8. [DOI:10.1016/j.phymed.2009.05.002] [PMID] [DOI:10.1016/j.phymed.2009.05.002]
22. Zhang X, Ma ZG, Yuan YP, Xu SC, Wei WY, Song P, et al. Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling. Cell Death Dis. 2018; 9(2):102. [DOI:10.1038/s41419-017-0123-3] [PMID] [PMCID] [DOI:10.1038/s41419-017-0123-3]
23. Komeili Movahhed T, Moslehi A, Golchoob M, Abadzadeh S. Allantoin improves methionine-choline deficient diet-induced nonalcoholic steatohepatitis in mice through involvement in endoplasmic reticulum stress and hepatocytes apoptosis-related genes expressions. Iran J Basic Med Sci. 2019; 22(7):736-44. [DOI:10.22038/IJBMS.2019.33553.8012]
24. Nikoukar LR, Nabavizadeh F, Mohamadi SM, Moslehi A, Hassanzadeh G, Nahrevanian H, et al. Protective effect of ghrelin in a rat model of celiac disease. Acta Physiol Hung. 2014; 101(4):438-47. [DOI:10.1556/APhysiol.101.2014.4.5] [PMID] [DOI:10.1556/APhysiol.101.2014.4.5]
25. Kim M, Yoo G, Randy A, Son YJ, Hong CR, Kim SM, et al. Lemon balm and its constituent, Rosmarinic Acid, alleviate liver damage in an animal model of nonalcoholic steatohepatitis. Nutrients. 2020; 12(4):1166. [DOI:10.3390/nu12041166] [PMID] [PMCID] [DOI:10.3390/nu12041166]
26. Hasanein P, Sharifi M. Effects of rosmarinic acid on acetaminophen-induced hepatotoxicity in male Wistar rats. Pharm Biol. 2017; 55(1):1809-16. [DOI:10.1080/13880209.2017.1331248] [PMID] [PMCID] [DOI:10.1080/13880209.2017.1331248]
27. Zhang T, Ma S, Liu C, Hu K, Xu M, Wang R. Rosmarinic acid prevents radiation-induced pulmonary fibrosis through attenuation of ROS/MYPT1/TGFβ1 signaling via miR-19b-3p. Dose Res. 2020; 18(4):1559325820968413. [DOI:10.1177/1559325820968413] [PMID] [PMCID] [DOI:10.1177/1559325820968413]
28. Chen YY, Tsai CF, Tsai MC, Chen WK, Hsu YW, Lu FJ. Anti-fibrotic effect of rosmarinic acid on inhibition of pterygium epithelial cells. Int J Ophthalmol. 2018; 11(2):189-95. [DOI:10.1177/1559325820968413] [PMID] [PMCID] [DOI:10.1177/1559325820968413]
29. Lin SY, Wang YY, Chen WY, Liao SL, Chou ST, Yang CP, et al. Hepatoprotective activities of rosmarinic acid against extrahepatic cholestasis in rats. Food Chem Toxicol 2017; 108(Pt A):214-23. [DOI:10.1016/j.fct.2017.08.005] [PMID] [DOI:10.1016/j.fct.2017.08.005]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.