Volume 15, Issue 8 (November 2021)                   Qom Univ Med Sci J 2021, 15(8): 564-573 | Back to browse issues page


XML Persian Abstract Print


1- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
2- Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran. , zhoushmandi@yahoo.com
3- Department of Biology, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
Abstract:   (1208 Views)
Background and Objectives: Depression is still one of challenging, and widely encountered disorders with complex etiology. Recently the role of healthy diet and olive oil in ameliorating depression has been claimed. This study was designed to explore the effects of oleuropein on depression induced by chronic stress in mice.
Methods: To induce chronic stress Chronic Restraint Stress (CRS) mice immobilizated in restrainer 2 hours; for 2 weeks then an foot electric shock (2 minutes 0.5mA) were used. Mice under chronic stress were randomly divided into 5 groups; including control group (under chronic stress receiving normal saline), intervention groups (under acute stress receiving oleuropein at doses of 7.5, 15 and 30 mg/kg and positive control (under chronic stress receiving diazepam). Then the expression of 6-interleukin (6- IL) and Metabotropic Glutamate Receptor (mGluR1) were measured, Forced Swimming Test (FST) and Tail Suspension Test (TST) were recorded.
Results: In CRS mice,at the dose of oleuropein at 15 mg/kg, the duration of immobility significantly reduced in tail suspension test and doses of 15 and 30 mg/kg of oleuropein significantly decreased the immobility time in forced swimming test (P<0.05) Oleuropein also decreased the expression of 6- IL and mGluR1.
Conclusion: According to our results, it seems that reducing the expression of 6- IL and mGluR1 may induce the effect of oleuropein on depressive-like behaviors in mice under chronic stress disorder.
Full-Text [PDF 4136 kb]   (392 Downloads)    
Type of Study: Original Article | Subject: فیزیولوژی
Received: 2021/04/11 | Accepted: 2021/10/12 | Published: 2021/10/2

References
1. Dos Santos RG, Osório FL, Crippa JAS, Riba J, Zuardi AW, Hallak JE. Antidepressive, anxiolytic, and antiaddictive effects of ayahuasca, psilocybin and lysergic acid diethylamide (LSD): A systematic review of clinical trials published in the last 25 years. Ther Adv Psychopharmacol. 2016; 6(3):193-213. [DOI:10.1177/2045125316638008] [PMID] [PMCID] [DOI:10.1177/2045125316638008]
2. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol. 2008; 581(1-2):113-20. [DOI:10.1016/j.ejphar.2007.12.005] [PMID] [DOI:10.1016/j.ejphar.2007.12.005]
3. Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, et al. Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague-Dawley rats. J Proteome Res. 2007; 6(6):2080-93. [DOI:10.1021/pr060412s] [PMID] [DOI:10.1021/pr060412s]
4. Ghanbarzadeh M, Heyat F. [Cellular and molecular mechanisms of the production of free radicals during exersise and their function on skeletal muscles (Persian)]. J Adv Biomed Sci. 2017; 7(1):1-11. http://jabs.fums.ac.ir/article-1-1025-en.html
5. Spiers JG, Chen HJC, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci. 2015; 8:456. [DOI:10.3389/fnins.2014.00456] [PMID] [PMCID] [DOI:10.3389/fnins.2014.00456]
6. Lowy MT, Gault L, Yamamoto BK. Rapid communication: Adrenalectomy attenuates stress‐induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem. 1993; 61(5):1957-60. [DOI:10.1111/j.1471-4159.1993.tb09839.x] [PMID] [DOI:10.1111/j.1471-4159.1993.tb09839.x]
7. Amani M, Samadi H, Doosti MH, Azarfarin M, Bakhtiari A, Majidi-Zolbanin N, et al. Neonatal NMDA receptor blockade alters anxiety-and depression-related behaviors in a sex-dependent manner in mice. Neuropharmacology. 2013; 73:87-97. [DOI:10.1016/j.neuropharm.2013.04.056] [PMID] [DOI:10.1016/j.neuropharm.2013.04.056]
8. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011; 69(8):754-61. [DOI:10.1016/j.biopsych.2010.12.015] [PMID] [PMCID] [DOI:10.1016/j.biopsych.2010.12.015]
9. Kawabata K, Kawai Y, Terao J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J Nutr Biochem. 2009; 21(5):374-80. [DOI:10.1016/j.jnutbio.2009.01.008] [PMID] [DOI:10.1016/j.jnutbio.2009.01.008]
10. Sánchez-Villegas A, Martínez-González MA, Estruch R, Salas-Salvadó J, Corella D, Covas MI, et al. Mediterranean dietary pattern and depression: The PREDIMED randomized trial. BMC Med. 2013; 11:208. [DOI:10.1186/1741-7015-11-208] [PMID] [PMCID] [DOI:10.1186/1741-7015-11-208]
11. Barbaro B, Toietta G, Maggio R, Arciello M, Tarocchi M, Galli A, et al. Effects of the olive-derived polyphenol oleuropein on human health. Int J Mol Sci. 2014; 15(10):18508-24. [DOI:10.3390/ijms151018508] [PMID] [PMCID] [DOI:10.3390/ijms151018508]
12. Kashefimehr Sh, Nasirzadeh MR. [Oleuropein cardioprotection effect against oxidative stress in streptozotocin-induced diabetic male rats (Persian)]. J Shahid Sadoughi Univ Med Sci. 2019; 27(3):1372-80. [DOI:10.18502/ssu.v27i3.1190] [DOI:10.18502/ssu.v27i3.1190]
13. de la Puerta R, Gutierrez VR, Hoult JRS. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem Pharmacol. 1999; 57(4):445-9. [DOI:10.1016/S0006-2952(98)00320-7] [DOI:10.1016/S0006-2952(98)00320-7]
14. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology. 2015; 51:164-75. [DOI:10.1016/j.psyneuen.2014.09.025] [PMID] [DOI:10.1016/j.psyneuen.2014.09.025]
15. Karabag-Coban F, Hazman O, Bozkurt MF, Ince S. Antioxidant status and anti-inflammatory effects of oleuropein in streptozotocin-induced diabetic nephropathy in rats. Eur J Med Plants. 2017; 18(2):1-10. https://journalejmp.com/index.php/EJMP/article/view/14494 [DOI:10.9734/EJMP/2017/31953]
16. Salehi A, Rabiei Z, Setorki M. Effect of gallic acid on chronic restraint stress-induced anxiety and memory loss in male BALB/c mice. Iran J Basic Med Sci. 2018; 21(12):1232-7. [DOI:10.22038/ijbms.2018.31230.7523] [PMID] [PMCID]
17. Zavvari F, Karimzadeh F. [A methodological review of development and assessment of behavioral models of depression in rats (Persian)]. Shefaye Khatam. 2015; 3(4):151-60. [DOI:10.18869/acadpub.shefa.3.4.151] [DOI:10.18869/acadpub.shefa.3.4.151]
18. Rabiei Z, Gholami M, Rafieian-Kopaei M. Antidepressant effects of Mentha pulegium in mice. Bangladesh J Pharmacol. 2016; 11(3):711-5. [DOI:10.3329/bjp.v11i3.27318] [DOI:10.3329/bjp.v11i3.27318]
19. Veeraiah P, Noronha JM, Maitra S, Bagga P, Khandelwal N, Chakravarty S, et al. Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression. Biol Psychiatry. 2014; 76(3):231-8. [DOI:10.1016/j.biopsych.2013.09.024] [PMID] [DOI:10.1016/j.biopsych.2013.09.024]
20. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009; 65(9):732-41. [DOI:10.1016/j.biopsych.2008.11.029] [PMID] [PMCID] [DOI:10.1016/j.biopsych.2008.11.029]
21. Liu B, Xu C, Wu X, Liu F, Du Y, Sun J, et al. Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation. Neuroscience. 2015; 294:193-205. [DOI:10.1016/j.neuroscience.2015.02.053] [PMID] [DOI:10.1016/j.neuroscience.2015.02.053]
22. Song C, Li X, Leonard BE, Horrobin DF. Effects of dietary n-3 or n-6 fatty acids on interleukin-1β-induced anxiety, stress, and inflammatory responses in rats. J Lipid Res. 2003; 44(10):1984-91. [DOI:10.1194/jlr.M300217-JLR200] [PMID] [DOI:10.1194/jlr.M300217-JLR200]
23. Maes M, Capuron L, Ravaud A, Gualde N, Bosmans E, Egyed B, et al. Lowered serum dipeptidyl peptidase IV activity is associated with depressive symptoms and cytokine production in cancer patients receiving interleukin-2-based immunotherapy. Neuropsychopharmacology. 2001; 24(2):130-40. [DOI:10.1016/S0893-133X(00)00168-8] [DOI:10.1016/S0893-133X(00)00168-8]
24. Rawdin B, Mellon S, Dhabhar F, Epel E, Puterman E, Su Y, et al. Dysregulated relationship of inflammation and oxidative stress in major depression. Brain Behav Immun. 2013; 31:143-52. [DOI:10.1016/j.bbi.2012.11.011] [PMID] [PMCID] [DOI:10.1016/j.bbi.2012.11.011]
25. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry. 2014; 71(12):1381-91. [DOI:10.1001/jamapsychiatry.2014.1611] [PMID] [DOI:10.1001/jamapsychiatry.2014.1611]
26. Ryu SJ, Choi HS, Yoon KY, Lee OH, Kim KJ, Lee BY. Oleuropein suppresses LPS-induced inflammatory responses in RAW 264.7 cell and zebrafish. J Agric Food Chem. 2015; 63(7):2098-105. [DOI:10.1021/jf505894b] [PMID] [DOI:10.1021/jf505894b]
27. Chinetti G, Fruchart JC, Staels B. Peroxisome Proliferator-Activated Receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000; 49(10):497-505. [DOI:10.1007/s000110050622] [PMID] [DOI:10.1007/s000110050622]
28. Marsh BJ, Stenzel-Poore MP. Toll-like receptors: Novel pharmacological targets for the treatment of neurological diseases. Curr Opin Pharmacol. 2008; 8(1):8-13. [DOI:10.1016/j.coph.2007.09.009] [PMID] [PMCID] [DOI:10.1016/j.coph.2007.09.009]
29. Liu J, Buisman-Pijlman F, Hutchinson MR. Toll-like receptor 4: Innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Frontir Neurosci. 2014; 8:309. [DOI:10.3389/fnins.2014.00309] [PMID] [PMCID] [DOI:10.3389/fnins.2014.00309]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.