Volume 15, Issue 9 (December 2021)                   Qom Univ Med Sci J 2021, 15(9): 606-617 | Back to browse issues page


XML Persian Abstract Print


1- Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2- Department of Biology, Faculty of Sciences, Qom Islamic Azad University, Islamic Azad University, Qom, Iran.
Abstract:   (1687 Views)
Background and Objectives: Levofloxacin is a fluoroquinolone. Long-term use of antibiotics, including fluoroquinolone antibiotics, causes dystrophic changes in the ovaries. In this study, the effects of levofloxacin on the development of ovarian follicles and their apoptosis in the in vitro and in vivo conditions of NMRI Mouse were investigated.
Methods: In the vitro study, isolated ovaries of animals were treated with levofloxacin at concentrations of 1, 2, 5, 10 µg/ml for 6 days and in the vivo study were treated with levofloxacin at concentrations of 100, 200, 400 and 800 mg/kg. After 24 days, animals were sacrificed in the in vivo groups and ovary samples were obtained. Hematoxylin and eosin (H&E) stains for histological studies also Real Time PCR techniques for study of expression rate of Bax and Bcl-2 genes were performed in both groups.
Results: The results of the in vitro study showed that the dose of 2 μg/ml induced apoptosis in the monolayer primary follicles. Doses of 5 and 10 μg/ml increased the induction of apoptosis in the multilayer primary follicle. The number of secondary follicles at the 5 μg/ml dose had the most decrease. While at the dose of 10 μg/ml, the number of mature follicles had the most increase. As the antibiotic concentration increases, the expression of the Bax gene decreases and Bcl-2  gene increases significantly. The results of the in vitro study showed that the number of primary and secondary follicles decreased dose-dependently. The number of atretic follicles increased significantly with increasing dose. The expression of the Bax and Bcl-2  genes increased with increasing levofloxacin antibiotic concentration.
Conclusion: This study demonstrates that levofloxacin induces apoptosis in ovarian follicles
Full-Text [PDF 6463 kb]   (362 Downloads)    
Type of Study: Original Article | Subject: فیزیولوژی
Received: 2021/08/5 | Accepted: 2021/09/21 | Published: 2021/09/1

References
1. Kim MR, Tilly JL. Current concepts in Bcl-2 family member regulation of female germ cell development and survival. Biochim Biophys Acta. 2004; 1644(2-3):205-10. [DOI:10.1016/j.bbamcr.2003.10.012] [DOI:10.1016/j.bbamcr.2003.10.012]
2. Zhao X, Xu C, Domagala J, Drlica K. DNA topoisomerase targets of the fluoroquinolones: A strategy for avoiding bacterial resistance. Proc Natl Acad Sci U S A. 1997; 94(25):13991-6. [DOI:10.1073/pnas.94.25.13991] [DOI:10.1073/pnas.94.25.13991]
3. Dogan Z, Cetin A, Elibol E, Vardi N, Turkoz Y. Effects of ciprofloxacin and quercetin on fetal brain development: A biochemical and histopathological study. J Matern Fetal Neonatal Med. 2019; 32(11):1783-91. [DOI:10.1080/14767058.2017.1418222] [DOI:10.1080/14767058.2017.1418222]
4. Mohammad JE, Hasnawi NM. The effect of cirprofloxacin (CPX) on the histological structure of albino rabbit ovary. J Glob Pharma Technol. 2018; 10(03):498-508. https://www.researchgate.net/publication/331024699_The_Effect_of_Cirprofloxacin_CPX_on_the_Histological_Structure_of_Albino_Rabbit_Ovary
5. Yu M, Li R, Zhang J. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochem Biophys Res Commun. 2016; 471(4):639-45. [DOI:10.1016/j.bbrc.2016.02.072] [DOI:10.1016/j.bbrc.2016.02.072]
6. Song M, Wu H, Wu S, Ge T, Wang G, Zhou Y, et al. Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage. Biomed Pharmacother. 2016; 84:1137-43. [DOI:10.1016/j.biopha.2016.10.034] [DOI:10.1016/j.biopha.2016.10.034]
7. Phiboonchaiyanan PP, Kiratipaiboon C, Chanvorachote P. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism. Chem Biol Interact. 2016; 250:1-11. [DOI:10.1016/j.cbi.2016.03.005] [DOI:10.1016/j.cbi.2016.03.005]
8. Avery B, Hay-Schmidt A, Hyttel P, Greve T. Embryo development, oocyte morphology, and kinetics of meiotic maturation in bovine oocytes exposed to 6-dimethylaminopurine prior to in vitro maturation. Mol Reprod Dev. 1998; 50(3):334-44. [DOI:10.1002/(SICI)1098-2795(199807)50:3<334::AID-MRD10>3.0.CO;2-4] https://doi.org/10.1002/(SICI)1098-2795(199807)50:3<334::AID-MRD10>3.0.CO;2-4 [DOI:10.1002/(SICI)1098-2795(199807)50:33.0.CO;2-4]
9. Amsterdam A, Sasson R, Keren-Tal I, Aharoni D, Dantes A, Rimon E, et al. Alternative pathways of ovarian apoptosis: Death for life. Biochem Pharmacol. 2003; 66(8):1355-62. [DOI:10.1016/S0006-2952(03)00485-4] [DOI:10.1016/S0006-2952(03)00485-4]
10. Bayir H, Kagan VE. Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis-there is nothing more practical than a good theory. Crit Care. 2008; 12(1):206. [DOI:10.1186/cc6779] [DOI:10.1186/cc6779]
11. Broadhead ML, Dass CR, Choong PFM. Cancer cell apoptotic pathways mediated by PEDF: Prospects for therapy. Trends Mol Med. 2009; 15(10):461-7. [DOI:10.1016/j.molmed.2009.08.003] [DOI:10.1016/j.molmed.2009.08.003]
12. Asgharzadeh S, Mirshokraei P, Hassanpour H, Ahmadi E, Nazari H. The effect of mesenchymal stem cells as co-culture in in vitro nuclear maturation of ovine oocytes. Animal Science Papers and Reports. 2015; 33(3):223-32. http://eprints.skums.ac.ir/6527/1/109.pdf
13. Yadav V, Talwar P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed Pharmacother. 2019; 111:934-46. [DOI:10.1016/j.biopha.2018.12.119] [DOI:10.1016/j.biopha.2018.12.119]
14. Mazoochi T, Ehteram M. [Apoptosis in the ovary and follicular atresia (Persian)]. J Kashan Univ Med Scie. 2018; 22(1):112-9. http://eprints.kaums.ac.ir/3275/
15. Johnson AL. Intracellular mechanisms regulating cell survival in ovarian follicles. Anim Reprod Sci. 2003; 78(3-4):185-201. [DOI:10.1016/S0378-4320(03)00090-3] [DOI:10.1016/S0378-4320(03)00090-3]
16. Perez GI, Knudson CM, Leykin L, Korsmeyer SJ, Tilly JL. Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med. 1997; 3(11):1228-32. [DOI:10.1038/nm1197-1228] [DOI:10.1038/nm1197-1228]
17. Matikainen T, Perez GI, Jurisicova A, Pru JK, Schlezinger JJ, Ryu HY, et al. Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet. 2001; 28(4):355-60. [DOI:10.1038/ng575] [DOI:10.1038/ng575]
18. Leo CP, Hsu SY, Chun SY, Bae HW, Hsueh AJ. Characterization of the antiapoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) and the stimulation of its message by gonadotropins in the rat ovary. Endocrinology. 1999; 140(12):5469-77. [DOI:10.1210/endo.140.12.7171] [DOI:10.1210/endo.140.12.7171]
19. Beberok A, Wrześniok D, Szlachta M, Rok J, Rzepka Z, Respondek M, et al. Lomefloxacin induces oxidative stress and apoptosis in COLO829 melanoma cells. Int J Mol Sci. 2017; 18(10):2194. [DOI:10.3390/ijms18102194] [DOI:10.3390/ijms18102194]
20. Yang SD, Bai ZL, Zhang F, Ma L, Yang DL, Ding WY. Levofloxacin increases the effect of serum deprivation on anoikis of rat nucleus pulposus cells via Bax/Bcl-2/caspase-3 pathway. Toxicol Mech Methods. 2014; 24(9):688-96. [DOI:10.3109/15376516.2014.963772] [DOI:10.3109/15376516.2014.963772]
21. Tsivkovskii R, Sabet M, Tarazi Z, Griffith DC, Lomovskaya O, Dudley MN. Levofloxacin reduces inflammatory cytokine levels in human bronchial epithelia cells: Implications for aerosol MP-376 (levofloxacin solutionfor inhalation) treatment of chronic pulmonary infections. FEMS Immunol Med Microbiol. 2011; 61(2):141-6. [DOI:10.1111/j.1574-695x.2010.00755.x] [DOI:10.1111/j.1574-695X.2010.00755.x]
22. Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, te Velde ER, et al. Survival of human ovarian follicles from fetal to adult life: Apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab. 2001; 86(7):3421-9. [DOI:10.1210/jcem.86.7.7679] [DOI:10.1210/jcem.86.7.7679]
23. Robles R, Tao XJ, Trbovich AM, Maravei DV, Nahum R, Perez GI, et al. Localization, regulation and possible consequences of apoptotic protease-activating factor-1 (Apaf-1) expression in granulosa cells of the mouse ovary. Endocrinology. 1999; 140(6):2641-4. [DOI:10.1210/endo.140.6.6931] [DOI:10.1210/endo.140.6.6931]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.