Volume 16, Issue 4 (July 2022)                   Qom Univ Med Sci J 2022, 16(4): 280-295 | Back to browse issues page


XML Persian Abstract Print


1- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran.
2- Cellular and Molecular Research Canter, Yasuj University of Medical Sciences, Yasuj, Iran
3- Department of Epidemiology and Biostatistics, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Sciences, Yasuj, Iran.
4- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
5- Department of Microbiology, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran. , khoramrooz@gmail.com
Abstract:   (1267 Views)
Background and Objectives: Regarding the important role of Staphylococcus aureus in burn wound infection, the present study aims to investigate of the effect of Polycaprolactone (PCL) scaffold containing Myrtus communis extract and silver nanoparticles on the healing of burn wound infections induced by Methicillin-Resistant Staphylococcus Aureus (MRSA) in rats.
Methods: In this experimental study, 42 male Wistar rats were divided into seven groups of 6. After anesthesia, second-degree burns on the back of the rats’ necks were created and MRSA was then injected into the wound area. The rats’ wounds were treated daily with nanofiber PCL containing Myrtus communis extract and silver nanoparticles. Antimicrobial properties, wound healing percentage, wound area, malondialdehyde and nitric oxide levels, and total antioxidant capacity were measured. Data were analyzed in GraphPad software using Tukey’s test and ANOVA.
Results: The wound area measurement showed the better effects on would healing in the groups treated by PCL+Myrtus communis extract and PCL+Myrtus communis extract+silver nanoparticles compared other groups. In bacteriological studies, the groups treated by PCL+Myrtus communis extract and PCL+Myrtus communis extract+silver nanoparticle showed more reduced bacterial growth compared to the PCL alone and positive control groups. Moreover, biochemical tests showed a decrease in malondialdehyde and nitric oxide levels in rats treated by PCL+Myrtus communis extract compared to other groups.
Conclusion: Myrtus communis extract and silver nanoparticles can cause changes in PCL properties, which have an important role in reducing the time required for wound healing and in preventing the progression of MRSA-induced wound infection.
Full-Text [PDF 7310 kb]   (340 Downloads) |   |   Full-Text (HTML)  (239 Views)  
Type of Study: Original Article | Subject: میکروب شناسی
Received: 2021/09/12 | Accepted: 2022/04/24 | Published: 2022/04/30

References
1. Lawton S. Skin 1: The structure and functions of the skin. Nurs Times. 2019; 115:30-3. [Link]
2. Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019; 10(1):111. [DOI:10.1186/s13287-019-1212-2] [PMID] [PMCID] [DOI:10.1186/s13287-019-1212-2]
3. Lindholm C, Searle R. Wound management for the 21st century: Combining effectiveness and efficiency. Int Wound J. 2016; 13 Suppl 2(Suppl 2):5-15. [DOI:10.1111/iwj.12623] [PMID] [PMCID] [DOI:10.1111/iwj.12623]
4. Yu JR, Navarro J, Coburn JC, Mahadik B, Molnar J, Holmes JH 4th, et al. Current and future perspectives on skin tissue engineering: Key features of biomedical research, translational assessment, and clinical application. Adv Healthc Mater. 2019; 8(5):e1801471. [DOI:10.1002/adhm.201801471] [PMID] [DOI:10.1002/adhm.201801471]
5. Khademi S, Shokrolahi P, Irani S. [Gelatin-chitosan coating enhances L929 fibroblasts proliferation on supramolecular nano-fibrous scaffolds (Persian)]. Cell Mol Res. 2016; 28(4):500-12. [Link]
6. Liberti FN, Wunderlich B. Melting of polycaprolactam. J Polym Sci Part A‐2: Polym Phys. 1968; 6(5):833-48. [DOI:10.1002/pol.1968.160060504] [DOI:10.1002/pol.1968.160060504]
7. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019; 119(8):5298-415. [DOI:10.1021/acs.chemrev.8b00593] [PMID] [PMCID] [DOI:10.1021/acs.chemrev.8b00593]
8. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020; 6(1):11. [DOI:10.1038/s41572-020-0145-5] [PMID] [PMCID] [DOI:10.1038/s41572-020-0145-5]
9. Servatyari K, Hamzehpour H, Rasouli MA. [The prevalence and types of burn wound infection in the burn Ward of Tohid hospital in Sanandaj in 2015: A short report (Persian)]. J Rafsanjan Univ Med Sci. 2018; 16(9):883-90. [Link]
10. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, et al. Streptomyces as a prominent resource of future anti-MRSA drugs. Front Microbiol. 2018; 9:2221. [DOI:10.3389/fmicb.2018.02221] [PMID] [PMCID] [DOI:10.3389/fmicb.2018.02221]
11. Siddiqui AH, Koirala J. Methicillin resistant staphylococcus aureus. Tampa: StatPearls; 2020. [Link]
12. Ríos JL, Andújar I. Chapter 50 - Apoptotic activities of Mediterranean plants, in the Mediterranean diet. In: Preedy VR, Watson RR, editors. Cambridge: Academic Press; 2020. [DOI:10.1016/B978-0-12-818649-7.00049-7] [DOI:10.1016/B978-0-12-818649-7.00049-7]
13. Ozcan O, Ipekci H, Alev B, Ustundag UV, Sen A, Emekli-Alturfan E, et al. The effect of myrtus communis l. ethanol extract on the small intestine and lungs in experimental thermal burn injury. J Therm Biol. 2020; 93:102685. [DOI:10.1016/j.jtherbio.2020.102685] [PMID] [DOI:10.1016/j.jtherbio.2020.102685]
14. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004; 275(1):177-82.[DOI:10.1016/j.jcis.2004.02.012] [PMID] [DOI:10.1016/j.jcis.2004.02.012]
15. Kong H, Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008; 24(5):2051-6. [DOI:10.1021/la703085e] [PMID] [DOI:10.1021/la703085e]
16. Ajitha B, Ashok Kumar Reddy Y, Sreedhara Reddy P. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater Sci Eng C Mater Biol Appl. 2015; 49:373-81. [DOI:10.1016/j.msec.2015.01.035] [PMID] [DOI:10.1016/j.msec.2015.01.035]
17. Tavakoli R, Nabi Pour F, Najafi Pour H. [Effect of betadine on wound healing in rat (Persian)]. J Babol Univ Med Sci. 2006; 8(3):7-12. [Link]
18. Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon. 2015; 95:1039-50. [DOI:10.1016/j.carbon.2015.09.011] [DOI:10.1016/j.carbon.2015.09.011]
19. Davari SA, Hajinezhad MR, Samadi K, Eftekhari S. [The effect of calendula, aloe and caster on cutaneous wounds healing process in mature male rat (Persian)]. J Rafsanjan Univ Med Sci. 2018; 17(2):93-104. [Link]
20. Mirzaei F, Salouti M, Shapouri R. [Effect of allicin and silver nanoparticles on skin infections due to staphylococcus aureus in mouse model (Persian)]. J Adv Med Biomed Res. 2015; 23(97):94-102. [Link]
21. Mohammad N, Azarnia M, Mousavi R, Ramezani T. [The effect of myrtus communism leave extract cream on wound healing process in Wistar rats (Persian)]. Complement Med J. 2014; 4(3):854-64. [Link]
22. Nikzad H, Atlasi MA, Naseri Esfahani AH, Naderian H, Nikzad M. [Effect of arnebia leaf on the healing process of rat's second degree burn (Persian)]. Feyz. 2010; 14(2):99-106. [Link]
23. Sanjadi M, Naieri H. [Evaluation of serum malondialdehyde concentrations and enzymatic activity of paraoxonase and arile esterase in women with a recurrent spontaneous abortion (Persian)]. Feyz. 2019; 23(5):535-42. [Link]
24. Mirzaei F, Khazaei M. [Role of nitric oxide in biological systems: A systematic review(Persian)]. J Mazandaran Univ Med Sci. 2017; 27(150):192-222. [Link]
25. Bigdeli MR, Hajizadeh S, Froozandeh M, Heidarianpour A, Rasoulian B, Asgari AR, et al. Normobaric hyperoxia induces ischemic tolerance and upregulation of glutamate transporters in the rat brain and serum TNF-alpha level. Exp Neurol. 2008; 212(2):298-306. [DOI:10.1016/j.expneurol.2008.03.029] [PMID] [DOI:10.1016/j.expneurol.2008.03.029]
26. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal Biochem. 1996; 239(1):70-6. [DOI:10.1006/abio.1996.0292] [PMID] [DOI:10.1006/abio.1996.0292]
27. Sridhar R, Venugopal JR, Sundarrajan S, Ravichandran R, Ramalingam B, Ramakrishna S. Electrospun nanofibers for pharmaceutical and medical applications. J Drug Deliv Sci Technol. 2011; 21(6):451-68. [DOI:10.1016/S1773-2247(11)50075-9] [DOI:10.1016/S1773-2247(11)50075-9]
28. Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A. Nanofiber: Synthesis and biomedical applications. Artif Cells Nanomed Biotechnol. 2016; 44(1):111-21. [DOI:10.3109/21691401.2014.922568] [PMID] [DOI:10.3109/21691401.2014.922568]
29. Dost Mahamadi M, Nasiri Semnani S, Shapouri R, Alizadeh H, Abdolahzaeh P. [Evaluation of antibacterial effect of aquatic and ethanolic extract of Malva neglecta and silver nanoparticle on staphylococus aureus and salmonella typhimurium Invivo and Invitro (Persian)]. Int J Basic Sci Med. 2012; 4(1):105-17. [Link]
30. Sharifi M, Bahrami SH, Hemmati Nejad N, Brouki Milan P. Electrospun PCL and PLA hybrid nanofibrous scaffolds containing Nigella sativa herbal extract for effective wound healing. J Appl Polym Sci. 2020; 137(46):49528. [DOI:10.1002/app.49528] [DOI:10.1002/app.49528]
31. Taheri A, Seyfan A, Jalalinezhad S, Nasery F. Antibacterial effect of Myrtus communis hydro-alcoholic extract on pathogenic bacteria. Zahedan J Res Med Sci. 2013; 15(6):19-24. [Link]
32. Salvagnini LE, Oliveira JR, Santos LE, Moreira RR, Pietro RC. Evaluation of the antibacterial activity of myrtus communis l.(myrtaceae) leaves. Rev Bras Farmacogn. 2008; 18:241-4. [DOI:10.1590/S0102-695X2008000200018] [DOI:10.1590/S0102-695X2008000200018]
33. Zomorodian K, Moein M, Goeini Lori Z, Ghasemi Y, Rahimi MJ, Bandegani A, et al. Chemical composition and antimicrobial activities of the essential oil from myrtus communis leaves. J Essent Oil Bearing Plants. 2013; 16(1):76-84. [DOI:10.1080/0972060X.2013.764183] [DOI:10.1080/0972060X.2013.764183]
34. Ayala-Núñez NV, Lara Villegas HH, del Carmen Ixtepan Turrent L, Rodríguez Padilla C. Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant staphylococcus aureus: Nanoscale does matter. Nanobiotechnology. 2009; 5(1):2-9. [DOI:10.1007/s12030-009-9029-1] [DOI:10.1007/s12030-009-9029-1]
35. Cui X, Gong J, Han H, He L, Teng Y, Tetley T, et al. Relationship between free and total malondialdehyde, a well-established marker of oxidative stress, in various types of human biospecimens. J Thorac Dis. 2018; 10(5):3088-97. [DOI:10.21037/jtd.2018.05.92] [PMID] [PMCID] [DOI:10.21037/jtd.2018.05.92]
36. Alvarez-Suarez JM, Giampieri F, Cordero M, Gasparrini M, Forbes-Hernández TY, Mazzoni L, et al. Activation of AMPK/Nrf2 signalling by manuka honey protects human dermal fibroblasts against oxidative damage by improving antioxidant response and mitochondrial function promoting wound healing. J Funct Foods. 2016; 25:38-49. [DOI:10.1016/j.jff.2016.05.008] [DOI:10.1016/j.jff.2016.05.008]
37. Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997; 2(4):152-9. [DOI:10.1016/S1360-1385(97)01018-2] [DOI:10.1016/S1360-1385(97)01018-2]
38. Bouzabata A, Cabral C, Gonçalves MJ, Cruz MT, Bighelli A, Cavaleiro C, et al. as source of a bioactive and safe essential oil. Food Chem Toxicol. 2015; 75:166-72. [DOI:10.1016/j.fct.2014.11.009] [PMID] [DOI:10.1016/j.fct.2014.11.009]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.