1. Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules. 2018; 23(4):826. [PMID] [PMCID] [
DOI:10.3390/molecules23040826]
2. Duggina P, Kalla CM, Varikasuvu SR, Bukke S, Tartte V. Protective effect of centella triterpene saponinsagainst cyclophosphamide-induced immune and hepatic system dysfunction in rats: Its possible mechanisms of action. J Physiol Biochem. 2015; 71(3):435-54. [DOI:10.1007/s13105-015-0423-y] [PMID] [
DOI:10.1007/s13105-015-0423-y]
3. Bokser L, Szende B, Schally AV. Protective effect of D-Type 6-lutenizing hormone-realising hormone micro capsule against cyclophosphamide-induced gonadotoxicity in feamale rats. Br J Cancer. 1990; 61(6):861-5. [DOI:10.1038/bjc.1990.192] [PMID] [PMCID] [
DOI:10.1038/bjc.1990.192]
4. Taherkhani B, Mirazi N. [Study of vitis vinifera L. seed's hydroethanolic extract on blood parameters in male rats induced with cyclophosphamide (Persian)]. Razi J Med Sci. 2019; 26(7):24-32. [Link]
5. Barnes H, Holland AE, Westall GP, Goh NS, Glaspole IN. Cyclophosphamide for connective tissue disease-associated interstitial lung disease. Cochrane Database Syst Rev. 2018; 1(1):CD010908. [DOI:10.1002/14651858.CD010908.pub2] [PMID] [
DOI:10.1002/14651858.CD010908.pub2]
6. Kassa Z, Asfaw Z, Demissew S. An ethnobotanical study of medicinal plants in sheka zone of southern nations nationalities and peoples regional state, Ethiopia. J Ethnobiol Ethnomed. 2020; 16(1):7. [DOI:10.1186/s13002-020-0358-4] [PMID] [PMCID] [
DOI:10.1186/s13002-020-0358-4]
7. Wangchuk P, Yeshi K, Jamphel K. Pharmacological, ethnopharmacological and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. Integr Med Res. 2017; 6(4):372-87. [DOI:10.1016/j.imr.2017.08.002] [PMID] [PMCID] [
DOI:10.1016/j.imr.2017.08.002]
8. Andersen FA, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, et al. Final report of the cosmetic ingredient review expert panel amended safety assessment of Calendula officinalis-derived cosmetic ingredients.Int J Toxicol. 2010; 29(6 Suppl):221S-43. [DOI:10.1177/1091581810384883] [PMID] [
DOI:10.1177/1091581810384883]
9. Nicolaus C, Junghanns S, Hartmann A, Murillo R, Ganzera M, Merfort I. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J Ethnopharmacol. 2017; 196:94-103.[DOI:10.1016/j.jep.2016.12.006] [PMID] [
DOI:10.1016/j.jep.2016.12.006]
10. Efstratiou E, Hussain AI, Nigam PS, Moore JE, Ayub MA, Rao JR. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as gram-negative and gram-positive clinical pathogens. Complement Ther Clin Pract. 2012; 18(3):173-6.[DOI:10.1016/j.ctcp.2012.02.003] [PMID] [
DOI:10.1016/j.ctcp.2012.02.003]
11. Cruceriu D, Balacescu O, Rakosy E. Calendula officinalis: Potential roles in cancer treatment and palliative care. Integr Cancer Ther. 2018; 17(4):1068-78.[DOI:10.1177/1534735418803766] [PMID] [PMCID] [
DOI:10.1177/1534735418803766]
12. Tanideh N, Jamshidzadeh A, Sepehrimanesh M, Hosseinzadeh M, Koohi-Hosseinabadi O, Najibi A, et al. Healing acceleration of acetic acid-induced colitis by marigold (Calendula officinalis) in male rats. Saudi J Gastroenterol. 2016; 22(1):50-6. [PMID] [PMCID] [
DOI:10.4103/1319-3767.173759]
13. Robinson D, Schulz G, Langley R, Donze K, Winchester K, Rodgers C. Evidence-based practice recommendations for hydration in children and adolescents with cancer receiving intravenous cyclophosphamide. J Pediatr Oncol Nurs. 2014; 31(4):191-9. [PMID] [PMCID] [
DOI:10.1177/1043454214532024]
14. Huyan XH, Lin YP, Gao T, Chen RY, Fan YM. Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice. Int Immunopharmacol. 2011; 11(9):1293-7. [DOI:10.1016/j.intimp.2011.04.011] [PMID] [
DOI:10.1016/j.intimp.2011.04.011]
15. Jiménez-Medina E, Garcia-Lora A, Paco L, Algarra I, Collado A, Garrido F. A new extract of the plant Calendula officinalis produces a dual in vitro effect: Cytotoxic anti-tumor activity and lymphocyte activation. BMC Cancer. 2006; 6:119. [PMID] [PMCID] [
DOI:10.1186/1471-2407-6-119]
16. Wang S, Huang S, Ye Q, Zeng X, Yu H, Qi D, Qiao S. Prevention of cyclophosphamide-induced immunosuppression in mice with the antimicrobial peptide sublancin. J Immunol Res. 2018; 2018:4353580. [DOI:10.1155/2018/4353580] [PMID] [PMCID] [
DOI:10.1155/2018/4353580]
17. Esmaeili G, Van Laere K, Muylle H, Leus L. Artificial chromosome doubling in allotetraploid Calendula officinalis. Front Plant Sci. 2020; 11:622. [PMID] [PMCID] [
DOI:10.3389/fpls.2020.00622]
18. Kontoghiorghe CN, Kolnagou A, Kontoghiorghes GJ. Phytochelators intended for clinical use in iron overload, other diseases of iron imbalance and free radical pathology. Molecules. 2015; 20(11):20841-72. [DOI:10.3390/molecules201119725] [PMID] [PMCID] [
DOI:10.3390/molecules201119725]
19. Neboh EE, Ufelle SA. Myeloprotective activity of crude methanolic leaf extract of Cassia occidentalis in cyclophosphamide-induced bone marrow suppression in Wistar rats. Adv Biomed Res. 2015; 4:5. [DOI:10.4103/2277-9175.148285] [PMID] [PMCID] [
DOI:10.4103/2277-9175.148285]
20. Fonseca YM, Catini CD, Vicentini FT, Nomizo A, Gerlach RF, Fonseca MJ. Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion. J Ethnopharmacol. 2010; 127(3):596-601. [DOI:10.1016/j.jep.2009.12.019] [PMID] [
DOI:10.1016/j.jep.2009.12.019]
21. Sen A. Prophylactic and therapeutic roles of oleanolic acid and its derivatives in several diseases. World J Clin Cases. 2020; 8(10):1767-92. [DOI:10.12998/wjcc.v8.i10.1767] [PMID] [PMCID] [
DOI:10.12998/wjcc.v8.i10.1767]
22. Leopoldini M, Russo N, Toscano M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011; 125(2):288-306. [DOI:10.1016/j.foodchem.2010.08.012] [
DOI:10.1016/j.foodchem.2010.08.012]
23. Varish DA, Amrish K, Mansi V, Vipin KG. Gupta SK. Therapeutic Potential of Calendula officinalis. Pharm Pharmacol Int J. 2018;6(2):149-155. DOI: 10.15406/ppij.2018.06.00171 [
DOI:10.15406/ppij.2018.06.00171]
24. Krummenauer ME, Lopes W, Garcia AWA, Schrank A, Gnoatto SCB, Kawano DF, et al. A highly active triterpene derivative capable of biofilm damage to control Cryptococcus spp. Biomolecules. 2019, 9(12):831. [PMID] [PMCID] [
DOI:10.3390/biom9120831]
25. Küpeli Akkol E, Genç Y, Karpuz B, Sobarzo-Sánchez E, Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers (Basel). 2020, 12(7):1959. [PMID] [PMCID] [
DOI:10.3390/cancers12071959]
26. Paya M, Halliwell B, Hoult R. Interactions of a series of coumarins with reactive oxygen species: Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem Pharmacol. 1992; 44(2):205-14. [DOI:10.1016/0006-2952(92)90002-Z] [
DOI:10.1016/0006-2952(92)90002-Z]
27. Stringlis IA, de Jonge R, Pieterse CMJ. The age of coumarins in plant-microbe interactions. Plant Cell Physiol. 2019; 60(7):1405-19. [PMID] [PMCID] [
DOI:10.1093/pcp/pcz076]
28. Majnooni MB, Fakhri S, Smeriglio A, Trombetta D, Croley CR, Bhattacharyya P, et al. Antiangiogenic effects of coumarins against cancer: From chemistry to medicine. Molecules. 2019; 24(23):4278. [PMID] [PMCID] [
DOI:10.3390/molecules24234278]