Volume 16, Issue 5 (August 2022)                   Qom Univ Med Sci J 2022, 16(5): 414-429 | Back to browse issues page

Research code: 15066
Ethics code: IR.MUQ.REC.1400.177


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Norouzi R, Siadatpanah A, Fateh R, Sohrabi F, Adnani Sadati S J. In-vitro Study on the Anti-leishmania Effects of Silver Nanoparticles on Leishmanaia Major Promastigotes. Qom Univ Med Sci J 2022; 16 (5) :414-429
URL: http://journal.muq.ac.ir/article-1-3453-en.html
1- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
2- Department of Nursing, Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran.
3- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
4- Department of Microbiology, Parasitology and Immunology, Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran. , Jafaradnani@yahoo.com
Abstract:   (1120 Views)
Background and Objectives:  Cutaneous leishmaniasis is one of the most important health-threatening diseases in Iran and other countries. Glucantime is currently used to treat this disease, but due to its side effects and high resistance, alternative therapies such as the use of nanoparticles have been considered by researchers. This study aims to investigate the anti-leishmania activity of silver nanoparticles on Leishmania major in vitro.
Methods: This is an experimental study on the anti-leishmania activities of silver nanoparticles at different concentrations of 0.75-0.96 µg/ml after 24, 48 and 72 hours of exposure to 106 live Leishmania major promastigotes. The numbers of live parasites were counted by Trypan Blue on a neobar slide using optical microscope (Hemocytometer method). Glucantime and distilled water were considered as positive and negative controls, respectively. The half-maximal inhibitory concentration (IC50) was calculated by SigmaPlot™ software, v‌ersion 13. All reactions were done three times and their average was considered as final result.
Results: All concentrations of silver nanoparticles had anti-leishmania activity, where the concentration of 96 µg/ml had the highest effect (100%) 72 hours after exposure. The IC50 was obtained 36.67, 27.2 and 21.08 µg/ml after 24, 48 and 72 hours of exposure, respectively.
Conclusion: Silver nanoparticles have an inhibitory effect on the growth of Leishmania major in different concentrations. However, further in-vivo studies are needed to determine the effictivness of silver nanoparticles.
Full-Text [PDF 4300 kb]   (366 Downloads)    
Type of Study: Original Article | Subject: انگل شناسی
Received: 2022/04/24 | Accepted: 2022/07/19 | Published: 2022/08/1

References
1. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, Leishmania major. Scienc. 2005; 309(5733):436-42. [DOI:10.1126/science.1112680] [PMID] [PMCID] [DOI:10.1126/science.1112680]
2. Mohammadi Azni S, Nokandeh Z, Khorsandi AA, Sanei Dehkordi AR. [Epidemiology of cutaneous leishmaniasis in Damghan district(Persian)].J Mil Med. 2010; 12(3):131-135. [Link]
3. Savoia D. Recent updates and perspectives on leishmaniasis. J Infect Dev Ctries. 2015; 9: 588-596. [DOI: 10.3855/jidc.6833] [DOI:10.3855/jidc.6833] [PMID] [DOI:10.3855/jidc.6833]
4. Katakura K. Molecular epidemiology of leishmaniasis in Asia (focus on cutaneous infections). Curr Opin Infect Dis. 2009; 22(2):126-130. [DOI:10.1097/QCO.0b013e3283229ff2] [PMID] [DOI:10.1097/QCO.0b013e3283229ff2]
5. Mirzaei F, Norouzi R, Siyadatpanah A, Mitsuwan W, Nilforoushzadeh M, Maleksabet A, et al. Butanol Fraction of Kelussia odoratissima Mozaff Inhibits the Growth of Leishmania major Promastigote and Amastigote. World's Vet J. 2020; 10(2):254-259. [DOI:10.36380/scil.2020.wvj33] [DOI:10.36380/scil.2020.wvj33]
6. Awad MA, AL Olayan EM, Siddiqui M I, Merghani NM, Alsaif SS, Loufi AS. Antileishmanial effect of silver nanoparticles: Green synthesis, characterization, in vivo and in vitro assessment. Biomed Pharmacother. 2021; 137:111294. [DOI:10.1016/j.biopha.2021.111294] [PMID] [DOI:10.1016/j.biopha.2021.111294]
7. Saleem K, Khursheed Z, Hano C, Anjum I, Anjum S. Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges, Nanomater. 2019; 9(12):1749.[DOI:10.3390/nano9121749] [PMID] [PMCID] [DOI:10.3390/nano9121749]
8. Firooz A, Mortazavi H, Khamesipour A, Ghiasi M, Abedini R, Balighi K, et al. Old world cutaneous leishmaniasis in Iran: clinical variants and treatments. J Dermatol Treat. 2020; 1:11. [DOI:10.1080/09546634.2019.1704214] [PMID] [DOI:10.1080/09546634.2019.1704214]
9. Sampaio RNR, Lucas IC, Costa Filho AVD. The use of azythromycin and N-methyl glucamine for the treatment of cutaneous Leishmaniasis caused by Leishmania (Leishmania) amazonensis in C57BL6 mice. Anais brasileiros de dermatologia. 2009; 84(2):125-128. [DOI:10.1590/S0365-05962009000200004] [PMID] [DOI:10.1590/S0365-05962009000200004]
10. Khan MA, Maruno M, Khaskhely NM, Ramzi ST, Hosokawa A, Uezato H, et al. Inhibition of intracellular proliferation of Leishmania parasites in vitro and suppression of skin lesion development in BALB/c mice by a novel lipid A analog (ONO-4007). Am J Trop Med Hyg. 2002; 67(2):184-190. [DOI:10.4269/ajtmh.2002.67.184] [PMID] [DOI:10.4269/ajtmh.2002.67.184]
11. Underwood C, Van Eps AW. Nanomedicine and veterinary science: The reality and the practicality. Vet J. 2012; 193(1):12-23. [DOI:10.1016/j.tvjl.2012.01.002] [PMID] [DOI:10.1016/j.tvjl.2012.01.002]
12. Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017; 45(7):1272-91. [DOI:10.1080/21691401.2016.1241792] [PMID] [DOI:10.1080/21691401.2016.1241792]
13. Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM, Ganash Magdah A, Helmy EA, et al. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A Rev BioNanosci. 2018; 8(1):5-16. [DOI:10.1007/s12668-017-0413-3] [DOI:10.1007/s12668-017-0413-3]
14. Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab Chem. 2019; 12(8):1823-38. [DOI:10.1016/j.arabjc.2014.12.014] [DOI:10.1016/j.arabjc.2014.12.014]
15. Igbineweka O, Aghedo F, Idusuyi O, Hussain N. Evaluating the efficacy of topical silver nitrate and intramuscular antimonial drugs in the treatment of cutaneous leishmaniasis in Sokoto, Nigeria. Afr J Clin Exp Microbiol. 2012; 13(2):90-97. [DOI:10.4314/ajcem.v13i2.6] [DOI:10.4314/ajcem.v13i2.6]
16. Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, et al. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine. 2011; 6:2705-14. [DOI:10.2147/IJN.S23883] [PMID] [PMCID] [DOI:10.2147/IJN.S23883]
17. Mayelifar K, Sazgarnia A, Yadegari Dehkordi S, Eshghi H, Attaran N, Soudmand S, et al. [Inhibitory effect of electroporation and silver nanoprticles on the growth of leishmania major promastigotes: Influence of pulse duration (Persian)]. MJMS. 2013; 56(4): 247-254. [DOI:10.22038/mjms.2013.1762]
18. Akhzari S, Nabian S, Shayan P, Taheri M. [Evaluation of the Effect of Liposome Carriers and Albumin Nanoparticles Containing Activated Melittin on Inhibiting the Growth of Leishmania Major Amastigote in vivo (Persian)]. sjimu. 2021; 29(6):36-47 [DOI:10.52547/sjimu.29.6.36] [DOI:10.52547/sjimu.29.6.36]
19. Casa DM, Scariot DB, Khalil NM, Nakamura CV, Mainardes RM. Bovine serum albumin nanoparticles containing amphotericin B were effective in treating murine cutaneous leishmaniasis and reduced the drug toxicity. Exp Parasitol. 2018; 192:12-8. [DOI:10.1016/j.exppara.2018.07.003] [PMID] [DOI:10.1016/j.exppara.2018.07.003]
20. Haddad A, Delavari M, Arbabi M, Gardeshmeydani I, Salmani A. [Evaluation of anti-leishmaniasis activity of curcumin-loaded chitosan nanoparticles on Leishmania major and L. infantum in vitro (Persian)]. Feyz. 2021; 25 (4) :1040-46. [Link]
21. Torabi N, Mohebali M, Shahverdi AR, Rezayat SM, Edrissian GH, Esmaeili J, Charehdar S. Nanogold for the treatment of zoonotic cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): an animal trial with methanol extract of Eucalyptus camaldulensis. JPHS. 2011; 1:15-8. [DOI:10.13140/2.1.4561.9840]
22. Soflaei S, Dalimi A, Abdoli A, Kamali M, Nasiri V, Shakibaie M, et al. Anti-leishmanial activities of selenium nanoparticles and selenium dioxide on Leishmania infantum. Comp Clin Path. 2014; 23(1):15-20. [DOI:10.1007/s00580-012-1561-z] [DOI:10.1007/s00580-012-1561-z]
23. Feizabadi E, Zavaran Hosseini A, Soudi S, Khosrojerdi A. [Studying the role of chitosan nanoparticle loaded with Leishmania major Secretory and excretory antigens on the number of apoptotic macrophages in parasite sensitive mouse (Persian)]. Danesh Med. 2020; 26(6): 9-18. [Link]
24. Sazgarnia A, Taheri A R, Soudmand S, Jafari Parizi A, Rajabi O, Sadat Darbandi M. Antiparasitic effects of gold nanoparticles with microwave radiation on promastigotes and amastigotes of Leishmania major. Int J Hyperth. 2013; 29(1): 79-86. [DOI:10.3109/02656736.2012.758875] [PMID] [DOI:10.3109/02656736.2012.758875]
25. Jameii F, Dalimi Asl A, Karimi M, Ghaffarifar F. [Healing Effect Comparison of Selenium and Silver Nanoparticles on Skin Leishmanial Lesions in Mice (Persian)]. Avicenna J Clin Med. 2015; 22(3):217-223. [Link]
26. Baiocco P, Ilari A, Ceci P, Orsini S, Gramiccia M, Di Muccio T, Colotti G. Inhibitory effect of silver nanoparticles on trypanothione reductase activity and Leishmania infantum proliferation. ACS Med Chem Lett. 2010; 2(3):230-3. [DOI:10.1021/ml1002629] [PMID] [PMCID] [DOI:10.1021/ml1002629]
27. Elmi T, Gholami S, Fakhar M, Azizi F. [A Review on the Use of Nanoparticles in the Treatment (Persian)]. J Mazandaran Univ Med Sci. 2013; 23(102):126-133. [Link]
28. Jebali A, Kazemi B. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol Vitro. 2013; 27(6):1896-904. [DOI:10.1016/j.tiv.2013.06.002] [PMID] [DOI:10.1016/j.tiv.2013.06.002]
29. El-Khadragy M, Alolayan EM, Metwally DM, El-Din MFS, Alobud SS, Alsultan NI, et al. Clinical efficacy associated with enhanced antioxidant enzyme activities of silver nanoparticles biosynthesized using Moringa oleifera leaf extract, against cutaneous leishmaniasis in a murine model of Leishmania major. Int J Environ Res. 2018; 15(5):1037. [DOI:10.3390/ijerph15051037] [PMID] [PMCID] [DOI:10.3390/ijerph15051037]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb