1. Chao CT, Krueger RR. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. Hortscience. 2007; 42(5):1077-82. [DOI:10.21273/HORTSCI.42.5.1077] [
DOI:10.21273/HORTSCI.42.5.1077]
2. Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int. 2011; 44(7):1812-22. [DOI:10.1016/j.foodres.2010.07.004] [
DOI:10.1016/j.foodres.2010.07.004]
3. Habib HM, El-Fakharany EM, Souka UD, Elsebaee FM, El-Ziney MG, Ibrahim WH. Polyphenol-rich date palm fruit seed (phoenix dactylifera L.) extract inhibits labile iron, enzyme, and cancer cell activities, and DNA and protein damage. Nutrients. 2022; 14(17):3536. [DOI:10.3390/nu14173536] [PMID] [PMCID] [
DOI:10.3390/nu14173536]
4. Khatib M, Al-Tamimi A, Cecchi L, Adessi A, Innocenti M, Balli D, et al. Phenolic compounds and polysaccharides in the date fruit (Phoenix dactylifera L.): Comparative study on five widely consumed Arabian varieties. Food Chem. 2022; 395:133591. [DOI:10.1016/j.foodchem.2022.133591] [PMID] [
DOI:10.1016/j.foodchem.2022.133591]
5. Rezazadeh R, Hassanzadeh H, Hosseini Y, Karami Y, Williams RR. Influence of pollen source on fruit production of date palm (Phoenix dactylifera L.) cv. Barhi in humid coastal regions of southern Iran. Sci Hortic. 2013; 160:182-88. [DOI:10.1016/j.scienta.2013.05.038] [
DOI:10.1016/j.scienta.2013.05.038]
6. Mojaddami A, Koolivand Z, Panahimehr M, Chamkouri N. Biosynthesis, characterization, and biological evaluation of cellulose nanofibers@ L-lysine@ silicon dioxide nanoparticles using Russian Artemisia Extract. Inorg Chem Commun. 2022; 148:110354. [DOI:10.1016/j.inoche.2022.110354] [
DOI:10.1016/j.inoche.2022.110354]
7. Gurgur E, Oluyamo SS, Adetuyi AO, Omotunde OI, Okoronkwo AE. Green synthesis of zinc oxide nanoparticles and zinc oxide-silver, zinc oxide-copper nanocomposites using Bridelia ferruginea as biotemplate. SN Appl Sci. 2020; 2(911):1-12. [DOI:10.1007/s42452-020-2269-3] [
DOI:10.1007/s42452-020-2269-3]
8. Arya PR, Abishad P, Unni V, Ram PV, Pollumahanti N, Yasur J, et al. Facile synthesis of silver-zinc oxide nanocomposites using Curcuma longa extract and its in vitro antimicrobial efficacy against multi-drug resistant pathogens of public health importance. Inorg Chem Commun. 2022; 148:110356. [DOI:10.1016/j.inoche.2022.110356] [
DOI:10.1016/j.inoche.2022.110356]
9. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. CA Cancer J Clin. 2022; 72(6):524-41. [DOI:10.3322/caac.21754] [PMID] [
DOI:10.3322/caac.21754]
10. Tehrani Nejad S, Rahimi R, Rabbani M, Rostamnia S. Zn (II)-porphyrin-based photochemically green synthesis of novel ZnTPP/Cu nanocomposites with antibacterial activities and cytotoxic features against breast cancer cells. Sci Rep. 2022; 12(1):17121. [DOI:10.1038/s41598-022-21446-3] [PMID] [PMCID] [
DOI:10.1038/s41598-022-21446-3]
11. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015; 7(3):219-42. [DOI:10.1007/s40820-015-0040-x] [PMID] [PMCID] [
DOI:10.1007/s40820-015-0040-x]
12. Saidin S, Jumat MA, Mohd Amin NAA, Saleh Al-Hammadi AS. Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater Sci Eng C Mater Biol Appl. 2021; 118:111382. [DOI:10.1016/j.msec.2020.111382] [PMID] [
DOI:10.1016/j.msec.2020.111382]
13. Gandhi AD, Miraclin PA, Abilash D, Sathiyaraj S, Velmurugan R, Zhang Y, et al. Nanosilver reinforced Parmelia sulcata extract efficiently induces apoptosis and inhibits proliferative signalling in MCF-7 cells. Environ Res. 2021; 199:111375. [DOI:10.1016/j.envres.2021.111375] [PMID] [
DOI:10.1016/j.envres.2021.111375]
14. Jomehzadeh N, Koolivand Z, Dahdouh E, Akbari A, Zahedi A, Chamkouri N. Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia Atlantica Resin. Mater Today Commun. 2021; 27:102457. [DOI:10.1016/j.mtcomm.2021.102457] [
DOI:10.1016/j.mtcomm.2021.102457]
15. Verma R, Basheer Khan A. Microwave‐irradiated green synthesis of a silver/zinc oxide nanocomposite from Atalantia monophylla (L.) leaf extract. Chem Eng Technol. 2021; 44(5):819-25. [DOI:10.1002/ceat.202000456] [
DOI:10.1002/ceat.202000456]
16. Rambabu K, Bharath G, Banat F, Show PL. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater. 2021; 402:123560. [DOI:10.1016/j.jhazmat.2020.123560] [PMID] [
DOI:10.1016/j.jhazmat.2020.123560]
17. Zinatloo-Ajabshir S, Morassaei MS, Amiri O, Salavati-Niasari M, Foong LK. Nd2Sn2O7 nanostructures: Green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram Int. 2020; 46(11):17186-96. [DOI:10.1016/j.ceramint.2020.03.014] [
DOI:10.1016/j.ceramint.2020.03.014]
18. Farhadi S, Ajerloo B, Mohammadi A. Green biosynthesis of spherical silver nanoparticles by using date palm (phoenix dactylifera) fruit extract and study of their antibacterial and catalytic activities. Acta Chim Slov. 2017; 64(1):129-43. [DOI:10.17344/acsi.2016.2956] [PMID] [
DOI:10.17344/acsi.2016.2956]
19. Ruddaraju LK, Pammi SVN, Guntuku GS, Padavala VS, Kolapalli VRM. A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci. 2020; 15(1):42-59. [DOI:10.1016/j.ajps.2019.03.002] [PMID] [PMCID] [
DOI:10.1016/j.ajps.2019.03.002]
20. Rajeshkumar S, Bharath LV. Mechanism of plant-mediated synthesis of silver nanoparticles-a review on biomolecules involved, characterisation and antibacterial activity. Chem-biol interact. 2017; 273:219-27. [DOI:10.1016/j.cbi.2017.06.019] [PMID] [
DOI:10.1016/j.cbi.2017.06.019]
21. Happy Agarwal, Soumya Menon, Venkat Kumar S, Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact. 2018; 286:60-70. [DOI:10.1016/j.cbi.2018.03.008] [PMID] [
DOI:10.1016/j.cbi.2018.03.008]
22. Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, et al. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology. 2011; 22(41):415104. [DOI:10.1088/0957-4484/22/41/415104] [PMID] [
DOI:10.1088/0957-4484/22/41/415104]
23. Naser R, Abu-Huwaij R, Al-khateeb I, Abbas MM, Atoom A. M. Green synthesis of zinc oxide nanoparticles using the root hair extract of Phoenix dactylifera: Antimicrobial and anticancer activity. Appl Nanosci. 2021; 11(5):1747-57. [DOI:10.1007/s13204-021-01837-0] [
DOI:10.1007/s13204-021-01837-0]
24. Al Mutairi JF, Al-Otibi F, Alhajri HM, Alharbi RI, Alarifi S, Alterary SS. Antimicrobial activity of green silver nanoparticles synthesized by different extracts from the leaves of saudi palm tree (phoenix dactylifera L.). Molecules. 2022; 27(10):3113. [DOI:10.3390/molecules27103113] [PMID] [PMCID] [
DOI:10.3390/molecules27103113]
25. Sahyon HA, Al-Harbi SA. Antimicrobial, anticancer and antioxidant activities of nano-heart of Phoenix dactylifera tree extract loaded chitosan nanoparticles: In vitro and in vivo study. Int J Biol Macromol. 2020; 160:1230-41. [DOI:10.1016/j.ijbiomac.2020.05.224] [PMID] [
DOI:10.1016/j.ijbiomac.2020.05.224]
26. Al-Radadi NS, Al-Youbi DAN. Environmentally-safe synthesis of gold and silver nano-particles with AL-madinah Barni fruit and their applications in the cancer cell treatments. J Comput Theor Nanosci. 2018; 15(6-7):1853-60. [DOI:10.1166/jctn.2018.7322] [
DOI:10.1166/jctn.2018.7322]
27. El-Kassas HY, El-Sheekh MM. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev. 2014; 15(10):4311-7. [DOI:10.7314/APJCP.2014.15.10.4311] [PMID] [
DOI:10.7314/APJCP.2014.15.10.4311]
28. Shochah QR, Jabir FA. Green synthesis of Au/ZnO nanoparticles for anticancer activity and oxidative stress against MCF-7 cell lines. Biomass Convers Biorefinery. 2023; 6:1-14. [Link] [
DOI:10.1007/s13399-022-03697-2]
29. Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2018; 14:87-100. [DOI:10.2147/IJN.S186888] [PMID] [PMCID] [
DOI:10.2147/IJN.S186888]