Volume 13, Issue 12 (February 2020)                   Qom Univ Med Sci J 2020, 13(12): 55-64 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baghbani-Arani F, Sharifan M, Mahmoodi-Khaledi E. Antibiotic resistance properties and molecular characterization of Pseudomonas aeruginosa strains from patients with cystic fibrosis (CF) referred to Gholhak Pathobiology Laboratory in Tehran city during 2016-2018. Qom Univ Med Sci J 2020; 13 (12) :55-64
URL: http://journal.muq.ac.ir/article-1-2664-en.html
1- Department of Genetics and Biotechnology, School of Biological Sciences, Varamin - Pishva Branch, Islamic Azad University
2- Department of Microbiology, School of Biological Sciences, Varamin - Pishva Branch, Islamic Azad University
3- Department of Cell and Molecular Biology, School of Chemistry, University of Kashan , e.mahmoodi_kh@kashanu.ac.ir
Abstract:   (4473 Views)
Background and Objectives: Pseudomonas aeruginosa isolates from the lungs of cystic fibrosis (CF) patients are often heterogeneous and antibiotic resistant strains. Our work therefore focused on the antibiotic resistance properties of these P. aeruginosa strains isolated from Iranian patients, as well as the genetic diversity analysis by a repetitive-element-based molecular assay.
Methods: This cross-sectional study performed on 100 strains of P. aeruginosa isolated from CF patients. The isolates were diagnosed using standard biochemical tests, and their antibiotic resistance patterns were determined. Molecular diversity investigated by ERIC-PCR and BOX-PCR methods, and the correlation between molecular types and antimicrobial resistance patterns determined by Pearson's chi-square test.
Results: The prevalence of multiple drug resistant isolates was 35%, and in terms of hypermutator [HP] phenotypes, only two isolates were HP. Most isolates (96%) were resistant to Rifampin, and the highest susceptibility to Streptomycin, Imipenem, and Meropenem were 96%, 93%, and 94%, respectively. Molecular analysis demonstrated that BOX-PCR fingerprinting produced 24 patterns in eight clusters, while ERIC-PCR resulted in 26 patterns in nine clusters.
Conclusion: The detection of large proportions of diversity and multi-antibiotic-resistant P. aeruginosa strains in CF patients within Iran indicates that this pathogen can be a threat to our public health. Our findings are useful for understanding the evolution of P. aeruginosa population in CF patients and identifying new targets for control of CF chronic infections.
Full-Text [PDF 667 kb]   (1085 Downloads)    
Type of Study: Original Article | Subject: میکروب شناسی
Received: 2019/11/29 | Accepted: 2020/03/29 | Published: 2020/03/18

References
1. Heijerman H. Infection and inflammation in cystic fibrosis: a short review. J Cyst Fibros 2005;49(Suppl 2):3-5. PMID: 15970469 [DOI:10.1016/j.jcf.2005.05.005]
2. Lutz L, Leão RS, Ferreira AG, Pereira DC, Raupp C, Pitt T, et al. Hypermutable Pseudomonas aeruginosa in cystic fibrosis patients from two Brazilian cities. J Clin Microbiol 2013;51(3):927-30. PMID: 23303495 [DOI:10.1128/JCM.02638-12]
3. Martina P, Feliziani S, Juan C, Bettiol M, Gatti B, Yantorno O, et al. Hypermutation in Burkholderia cepacia complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. Int J Med Microbiol 2014;304(8):1182-91. PMID: 25217078 [DOI:10.1016/j.ijmm.2014.08.011]
4. Montanari S, Oliver A, Salerno P, Mena A, Bertoni G, Tümmler B, et al. Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. J Microbiol 2007;153(Pt 5):1445-54. PMID: 17464058 [DOI:10.1099/mic.0.2006/003400-0]
5. Marvig RL, Johansen HK, Molin S, Jelsbak L. Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet 2013;9(9):e1003741. PMID: 24039595 [DOI:10.1371/journal.pgen.1003741]
6. Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, et al. Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 2008;190(24):7910-7. PMID: 18849421 [DOI:10.1128/JB.01147-08]
7. Henrichfreise B, Wiegand I, Pfister W, Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrob Agents Chemother 2007;51(11):4062-70. PMID: 17876002 [DOI:10.1128/AAC.00148-07]
8. Warren AE, Boulianne-Larsen CM, Chandler CB, Chiotti K, Kroll E, Miller SR, et al. Genotypic and phenotypic variation in Pseudomonas aeruginosa reveals signatures of secondary infection and mutator activity in certain cystic fibrosis patients with chronic lung infections. Infect Immun 2011;79(12):4802-18. PMID: 21930755 [DOI:10.1128/IAI.05282-11]
9. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007;67(3):351-68. PMID: 17335295 [DOI:10.2165/00003495-200767030-00003]
10. Tang YW, Stratton CW, Tang YW. Advanced techniques in diagnostic microbiology. New York: Springer; 2013. Link [DOI:10.1007/978-1-4614-3970-7]
11. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing of anaerobic bacteria: informational supplement. Wayne, PA, USA: Clinical and Laboratory Standards Institute (CLSI); 2018. Link
12. Ferroni A, Guillemot D, Moumile K, Bernede C, Le Bourgeois M, Waernessyckle S, et al. Effect of mutator P. aeruginosa on antibiotic resistance acquisition and respiratory function in cystic fibrosis. Pediatr Pulmonol 2009;44(8):820-5. PMID: 19598278 [DOI:10.1002/ppul.21076]
13. Dawson SL, Fry JC, Dancer BN. A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J Microbiol Methods 2002;50(1):9-22. PMID: 11943354 [DOI:10.1016/S0167-7012(02)00003-9]
14. Brooks G, Butel J, Morse S, Brooks G, Butel J, Morse S. Jawetz, Melnick, & Adelberg's medical microbiology (LANGE Basic Science). New York: McGraw-Hill; 2004. Link
15. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J Roy Soc Med 2002;95(Suppl 41):22-6. PMID: 12216271
16. Faridi F, Javadpour S, Kargar M. REP-PCR genotyping and antibiogram pattern of clinical isolates of Pseudomonas aeruginosa in Shahid Mohammadi hospital, Bandar Abbas, Iran. Qom Univ Med Sci 2016;10(7):38-48. Link
17. Tabatabaee SA, Nariman S, Taghipour R. Antibiogram and genotype of Pseudomonas aeroginosa in cystic fibrosis. J Urmia Univ Med Sci 2013;24(3):184-92. Link
18. Pittman JE, Calloway EH, Kiser M, Yeatts J, Davis SD, Drumm ML, et al. Age of Pseudomonas aeruginosa acquisition and subsequent severity of cystic fibrosis lung disease. Pediatr Pulm 2011;46(5):497-504. PMID: 21194167 [DOI:10.1002/ppul.21397]
19. Rajabpour M, Arabestani MR, Yousefi Mashof R, Alikhani MY. MIC determination of Pseudomonas aeruginosa strains were isolated from clinical specimens of patients admitted to educational hospitals in Hamedan (90-91). Iran J Med Microbiol 2013;7(3):18-25. Link
20. Navaneeth BV, Sridaran D, Sahay D, Belwadi MR. A preliminary study on metallo-[beta]-lactamase producing Pseudomonas aeruginosa in hospitalized patients. Indian J Med Res 2002;116:264. Link
21. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context 2018;7:212527. PMID: 29872449 [DOI:10.7573/dic.212527]
22. Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005;49(2):479-87. PMID: 15673721 [DOI:10.1128/AAC.49.2.479-487.2005]
23. Hu YF, Liu CP, Wang NY, Shih SC. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. BMC Infect Dis 2016;16(1):444. PMID: 27553962 [DOI:10.1186/s12879-016-1785-7]
24. Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States. Antimicrob Agents Chmother 2017;61(3):e02252-16. PMID: 28069652 [DOI:10.1128/AAC.02252-16]
25. Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen H, Høiby N. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 2009;53(6):2483-91. PMID: 19332676 [DOI:10.1128/AAC.00428-08]
26. Syrmis MW, O'Carroll MR, Sloots TP, Coulter C, Wainwright CE, Bell SC, et al. Rapid genotyping of Pseudomonas aeruginosa isolates harboured by adult and paediatric patients with cystic fibrosis using repetitive-element-based PCR assays. J Med Microbiol 2004;53(Pt 11):1089-96. PMID: 15496385 [DOI:10.1099/jmm.0.45611-0]
27. Khosravi AD, Hoveizavi H, Mohammadian A, Farahani A, Jenabi A. Genotyping of multidrug-resistant strains of Pseudomonas aeruginosa isolated from burn and wound infections by ERIC-PCR. Acta Cir Bras 2016;31(3):206-11. PMID: 27050792 [DOI:10.1590/S0102-865020160030000009]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb