Volume 13, Issue 12 (February 2020)                   Qom Univ Med Sci J 2020, 13(12): 1-12 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kadivarian H, Rahimi-Feyli P, Moghaddam A, Alimohammadi S. Evaluation of the Effect of Follicle Stimulating Hormone (FSH) on Survival and Colonization of Caprine Spermatogonial Stem Cells during in Vitro Culture. Qom Univ Med Sci J 2020; 13 (12) :1-12
URL: http://journal.muq.ac.ir/article-1-2695-en.html
1- School of Veterinary Medicine, Razi University
2- Department of Clinical Sciences, School of Veterinary Medicine, Razi University
3- Department of Basic Sciences, Section of Physiology, School of Veterinary Medicine, Razi University , S.alimohammadi@razi.ac.ir
Abstract:   (4328 Views)
Background and Objectives: Spermatogonial stem cells are specific cells that have the ability of self-renewal and differentiation. These cells play an essential role in maintaining spermatogenesis and fertility. In this regard, the present study was performed with the purpose of investigating the effect of different concentrations of follicle stimulating hormone (FSH) on in vitro colony formation of caprine spermatogonial stem cells.
Methods: Spermatogonial cells, were isolated from prepubertal goat testis using two-step enzymatic digestion. Then, isolated cells were cultured for 10 days in four groups. In the control group, simple culture of spermatogonial cells was performed in Dulbecco's Modified Eagle Medium (DMEM) containing 1% antibiotics and 5% FBS (Fetal Bovine Serum). In the treatment groups 1, 2, and 3, different concentrations of follicle stimulating hormone (5, 10, and 20 IU/ml), was added to the culture medium, respectively. The culture media were changed every 72 hours. Identification of cells was confirmed by immunocytochemical staining against PGP9.5 antigen. Immediately after isolation, percentage of cells viability, surface area, and number of colonies formed on 4th, 7th and 10th days after the culture, were evaluated using an inverted microscope. Data were analyzed using one way ANOVA test.
Results: The findings indicated that viability rate of Spermatogonial stem cells after isolation was 89.4 ± 2.32%. The effect of FSH on the formation of spermatogonial cells colonies was dose dependent. Doses of 5 and 10 IU/ml increased the surface area and number of the spermatogonial cell derived colonies but dose of 20 IU/ml reduced colonies formation (p < 0.05).
Conclusion: FSH can provide an appropriate culture medium for the study of spermatogonial cells in vitro.
Full-Text [PDF 1013 kb]   (986 Downloads)    
Type of Study: Original Article | Subject: فیزیولوژی
Received: 2019/12/24 | Accepted: 2020/02/3 | Published: 2020/03/18

References
1. 1. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000;21(6):776-98. PMID: 11105904
2. Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, et al. Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A 2002;99(23):14931-6. PMID: 12391306 [DOI:10.1073/pnas.222561399]
3. de Rooij DG. The nature and dynamics of spermatogonial stem cells. Development 2017;144(17):3022-30. PMID: 28851723 [DOI:10.1242/dev.146571]
4. Aponte PM, van Bragt MP, de Rooij DG, van Pelt AM. Spermatogonial stem cells: characteristics and experimental possibilities. APMIS 2005;113(11-12):727-42. PMID: 16480445 [DOI:10.1111/j.1600-0463.2005.apm_302.x]
5. La HM, Hobbs RM. Mechanisms regulating mammalian spermatogenesis and fertility recovery following germ cell depletion. Cell Mol Life Sci 2019;76(20):4071-102. PMID: 31254043 [DOI:10.1007/s00018-019-03201-6]
6. Niu B, Li B, Wu C, Wu J, Yan Y, Shang R, et al. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells. Oncotarget 2016;7(47):77532-42. PMID: 27769051 [DOI:10.18632/oncotarget.12720]
7. Wang J, Cao H, Xue X, Fan C, Fang F, Zhou J, et al. Effect of vitamin C on growth of caprine spermatogonial stem cells in vitro. Theriogenology 2014;81(4):545-55. PMID: 24368149 [DOI:10.1016/j.theriogenology.2013.11.007]
8. Anjamrooz SH, Movahedin M, Tiraihi T, Mowla SJ. In vitro effects of epidermal growth factor, follicle stimulating hormone and testosterone on mouse spermatogonial cell colony formation. Reprod Fertil Dev 2006;18(6):709-20. PMID: 16930518 [DOI:10.1071/RD05126]
9. Dobrinski I, Ogawa T, Avarbock MR, Brinster RL. Effect of the GnRH-agonist leuprolide on colonization of recipient testes by donor spermatogonial stem cells after transplantation in mice. Tissue Cell 2001;33(2):200-7. PMID: 11392673 [DOI:10.1054/tice.2001.0177]
10. Chen LY, Brown PR, Willis WB, Eddy EM. Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology 2014;155(12):4964-74. PMID: 25181385 [DOI:10.1210/en.2014-1406]
11. Oatley JM, Brinster RL. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 2008;24:263-86. PMID: 18588486 [DOI:10.1146/annurev.cellbio.24.110707.175355]
12. Ding LJ, Yan GJ, Ge QY, Yu F, Zhao X, Diao ZY, et al. FSH acts on the proliferation of type A spermatogonia via Nur77 that increases GDNF expression in the Sertoli cells. FEBS Lett 2011;585(15):2437-44. PMID: 21726557 [DOI:10.1016/j.febslet.2011.06.013]
13. de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech 2009;72(8):580-5. PMID: 19263493 [DOI:10.1002/jemt.20699]
14. Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol 2018;9:763. PMID: 30619093 [DOI:10.3389/fendo.2018.00763]
15. Simoni M, Casarini L. Mechanisms in endocrinology: Genetics of FSH action: a 2014-and-beyond view. Eur J Endocrinol 2014;170(3):R91-107. PMID: 24288354 [DOI:10.1530/EJE-13-0624]
16. Hansson V, Skalhegg BS, Tasken K. Cyclic-AMP-dependent protein kinase (PKA) in testicular cells. Cell specific expression, differential regulation and targeting of subunits of PKA. J Steroid Biochem Mol Biol 2000;73(1-2):81-92. PMID: 10905822 [DOI:10.1016/S0960-0760(00)00057-1]
17. Tajik P, Narenji Sani R, Moezifar M, Yousefi MH, Movahedin M, Qasemi-Panahi B, et al. Effect of follicle-stimulating hormone and testosterone on colony formation of bovine spermatogonial stem cell. Comp Clin Path 2013;23(4):901-6. Link [DOI:10.1007/s00580-013-1710-z]
18. Narenji Sani R, Tajik P, Yousefi MH, Movahedin M, Qasemi-Panahi B, Shafiei S, et al. Follicle stimulating hormone increases spermatogonial stem cell colonization during in vitro co-culture. Vet Res Forum 2012;4(1):37-41. PMID: 25593684
19. Tajik P, Mokhber-Dezfuli MR, Alighazi N, Rahimi-Feyli P; Shafiei S. The effect of follicle stimulating hormone (FSH) on colony formation of ovine spermatogonial stem cells in vitro. J Isfahan Med Sch 2014;31(268):2228-37. Link
20. Meehan T, Schlatt S, O'Bryan MK, de Kretser DM, Loveland KL. Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH. Dev Biol 2000;220(2):225-37. PMID: 10753512 [DOI:10.1006/dbio.2000.9625]
21. Tesarik J, Martinez F, Rienzi L, Iacobelli M, Ubaldi F, Mendoza C, et al. In-vitro effects of FSH and testosterone withdrawal on caspase activation and DNA fragmentation in different cell types of human seminiferous epithelium. Hum Reprod 2002;17(7):1811-19. PMID: 12093844 [DOI:10.1093/humrep/17.7.1811]
22. van Pelt AM, Morena AR, van Dissel-Emiliani FM, Boitani C, Gaemers IC, de Rooij DG, et al. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod 1996;55(2):439-44. PMID: 8828852 [DOI:10.1095/biolreprod55.2.439]
23. Zandi A, Rahimi-Feyli P, Moghaddam AA, Nikousefat Z. Effect of testosterone on of ovine spermatogonial colony formation in-vitro. Feyz 2016;20(3):205-13. Link
24. Heidari B, Rahmati-Ahmadabadi M, Akhondi MM, Zarnani AH, Jeddi-Tehrani M, Shirazi A, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers. J Assist Reprod Genet 2012;29(10):1029-38. PMID: 22782689 [DOI:10.1007/s10815-012-9828-5]
25. Rodriguez-Sosa JR, Dobson H, Hahnel A. Isolation and transplantation of spermatogonia in sheep. Theriogenology 2006;66(9):2091-103. PMID: 16870245 [DOI:10.1016/j.theriogenology.2006.03.039]
26. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010;365(1546):1663-78. PMID: 20403877 [DOI:10.1098/rstb.2010.0026]
27. Houdebine LM. Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 2009;32(2):107-21. PMID: 18243312 [DOI:10.1016/j.cimid.2007.11.005]
28. Abbasi H, Tahmoorespur M, Hosseini SM, Nasiri Z, Bahadorani M, Hajian M, et al. THY1 as a reliable marker for enrichment of undifferentiated spermatogonia in the goat. Theriogenology 2013;80(8):923-32. PMID: 23987985 [DOI:10.1016/j.theriogenology.2013.07.020]
29. Izadyar F, Spierenberg GT, Creemers LB, den Ouden K, de Rooij DG. Isolation and purification of type A spermatogonia from the bovine testis. Reproduction 2002;124(1):85-94. PMID: 12090922 [DOI:10.1530/reprod/124.1.85]
30. Shirazi MS, Heidari B, Shirazi A, Zarnani AH, Jeddi-Tehrani M, Rahmati-Ahmadabadi M, et al. Morphologic and proliferative characteristics of goat type A spermatogonia in the presence of different sets of growth factors. J Assist Reprod Genet 2014;31(11):1519-31. PMID: 25194750 [DOI:10.1007/s10815-014-0301-5]
31. Eslahi N, Hadjighassem MR, Joghataei MT, Mirzapour T, Bakhtiyari M, Shakeri M, et al. The effects of poly L-lactic acid nanofiber scaffold on mouse spermatogonial stem cell culture. Int J Nanomedicine 2013;8:4563-76. PMID: 24348035 [DOI:10.2147/IJN.S45535]
32. Kon Y, Endoh D, Iwanaga T. Expression of protein gene product 9.5, a neuronal ubiquitin C-terminal hydrolase, and its developing change in sertoli cells of mouse testis. Mol Reprod Dev 1999;54(4):333-41. PMID: 10542373 https://doi.org/10.1002/(SICI)1098-2795(199912)54:4<333::AID-MRD3>3.0.CO;2-8 [DOI:10.1002/(SICI)1098-2795(199912)54:43.0.CO;2-8]
33. Zhang Z, Hill J, Holland M, Kurihara Y, Loveland KL. Bovine sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J Androl 2008;29(4):418-30. PMID: 18326509 [DOI:10.2164/jandrol.107.004465]
34. Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 2019;10:46. PMID: 31205688 [DOI:10.1186/s40104-019-0355-4]
35. Jegou B. The Sertoli-germ cell communication network in mammals. Int Rev Cytol 1993;147:25-96. PMID: 8225836 [DOI:10.1016/S0074-7696(08)60766-4]
36. Meroni SB, Riera MF, Pellizzari EH, Cigorraga SB. Regulation of rat Sertoli cell function by FSH: possible role of phosphatidylinositol 3-kinase/protein kinase B pathway. J Endocrinol 2002;174(2):195-204. PMID: 12176658 [DOI:10.1677/joe.0.1740195]
37. Mullaney BP, Skinner MK. Basic fibroblast growth factor (bFGF) gene expression and protein production during pubertal development of the seminiferous tubule: follicle-stimulating hormone-induced Sertoli cell bFGF expression. Endocrinology 1992;131(6):2928-34. PMID: 1446630 [DOI:10.1210/endo.131.6.1446630]
38. Bahadorani M, Hosseini SM, Abedi P, Abbasi H, Nasr-Esfahani MH. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. Growth Factors 2015;33(3):181-91. PMID: 26154310 [DOI:10.3109/08977194.2015.1062758]
39. Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 2012;139(10):1734-43. PMID: 22491947 [DOI:10.1242/dev.076539]
40. Rossi P, Dolci S. Paracrine Mechanisms involved in the control of early stages of mammalian spermatogenesis. Front Endocrinol 2013;4:181. PMID: 24324457 [DOI:10.3389/fendo.2013.00181]
41. Zhang S, Li W, Zhu C, Wang X, Li Z, Zhang J, et al. Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis. J Biol Chem 2012;287(48):40471-83. PMID: 23086931 [DOI:10.1074/jbc.M112.383802]
42. Monaco L, Foulkes NS, Sassone-Corsi P. Pituitary follicle-stimulating hormone (FSH) induces CREM gene expression in Sertoli cells: involvement in long-term desensitization of the FSH receptor. Proc Natl Acad Sci U S A 1995;92(23):10673-7. PMID: 7479863 [DOI:10.1073/pnas.92.23.10673]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb