1. 1. Zhang C, Zheng G, Xu SF, Xu D. Computational challenges in characterization of bacteria and bacteria-host interactions based on genomic data. J Comput Sci Technol 2012;27(2):225-39. Link [
DOI:10.1007/s11390-012-1219-y]
2. Banerjee AK, Ravi V, Murty US, Sengupta N, Karuna B. Application of intelligent techniques for classification of bacteria using protein sequence-derived features. Appl Biochem Biotechnol 2013;170(6):1263-81. PMID: 23657902 [
DOI:10.1007/s12010-013-0268-1]
3. Berezovsky IN, Shakhnovich EI. Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci U S A 2005;102(36):12742-7. PMID: 16120678 [
DOI:10.1073/pnas.0503890102]
4. Fujita M, Kanehisa M. Comparative analysis of DNA-binding proteins between thermophilic and mesophilic bacteria. Genome Inform 2005;16(1):174-81. PMID: 16362920
5. Angermueller C, Pärnamaa T, Parts L, Stegle O. Deep learning for computational biology. Mol Syst Biol 2016;12(7):878. PMID: 27474269 [
DOI:10.15252/msb.20156651]
6. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? Advances in neural information processing systems. Vancouver: Neural Information Processing Systems location; 2014. P. 3320-8. Link
7. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RK, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science 2015;347(6218):1254806. PMID: 25525159 [
DOI:10.1126/science.1254806]
8. Leung MK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue-regulated splicing code. Bioinformatics 2014;30(12):i121-9. PMID: 24931975 [
DOI:10.1093/bioinformatics/btu277]
9. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nature Biotechnol 2015;33(8):831-8. PMID: 26213851 [
DOI:10.1038/nbt.3300]
10. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015;12(10):931-4. PMID: 26301843 [
DOI:10.1038/nmeth.3547]
11. Zhou J, Theesfeld CL, Yao K, Chen KM, Wong AK, Troyanskaya OG. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat Genet. 2018;50(8):1171-1179. PMID:30013180 [
DOI:10.1038/s41588-018-0160-6]
12. Ahsan R, Ebrahimi M. Image processing techniques represent innovative tools for comparative analysis of proteins. Comput Biol Med 2020;117:103584. PMID: 32072976 [
DOI:10.1016/j.compbiomed.2019.103584]
13. Paloheimo M, Mäntylä A, Kallio J, Puranen T, Suominen P. Increased production of xylanase by expression of a truncated version of the xyn11A gene from Nonomuraea flexuosa in Trichoderma reesei. Appl Environ Microbiol 2007;73(10):3215-24. PMID: 17384308 [
DOI:10.1128/AEM.02967-06]
14. Yang HM, Yao B, Meng K, Wang YR, Bai YG, Wu NF. Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. J Ind Microbiol Biotechnol 2007;34(3):213-8. PMID: 17139507 [
DOI:10.1007/s10295-006-0188-y]
15. Yang HM, Yao B, Fan YL. Recent advances in structures and relative enzyme properties of xylanase. Sheng Wu Gong Cheng Xue Bao 2005;21(1):6-11. PMID: 15859321
16. Ebrahimie E, Ebrahimi M. Searching for patterns of thermostability in proteins and defining the main features contributing to enzyme thermostability through screening, clustering, and decision tree algorithms. EXCLI 2009;8:218-33. Link