Volume 14, Issue 5 (July 2020)                   Qom Univ Med Sci J 2020, 14(5): 59-68 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemian A H, Solouki L, Rezaei M, Attar A. Comparison of Generalized Weibull and Weibull Parametric Models in Survival Analysis of Patients with Hypertension to Acute Renal Failure: Death due to Cardiovascular Disease as a Competing Risk. Qom Univ Med Sci J 2020; 14 (5) :59-68
URL: http://journal.muq.ac.ir/article-1-2796-en.html
1- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
2- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran , l_soloki68@yahoo.com
3- Department of Cardiovascular Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Abstract:   (3483 Views)
Background and Objectives: Hypertension is one of the most prevalent diseases affecting numerous people in different societies. One of the major complications of hypertension is the occurrence of acute renal failure. Therefore, it is important to evaluate the survival rate of patients with hypertension until the onset of acute renal failure and determine the factors affecting it.
 
Methods: This analytical study was conducted using modeling at the Kermanshah University of Medical Science within February 2016-July 2018. The current research examines the survival of patients with hypertension until acute renal failure using the Generalized Weibull Distribution model based on competing risks which included death due to cardiovascular disease. The required information was extracted from the Systolic Blood Pressure Intervention Trial (SPRINT) data file.
 
Results: Out of 842 patients, 85 died of cardiovascular diseases, 298 were diagnosed with acute renal failure, and 459 were censored. The mean survival time was 929.49 days and its median value was 1029 days. The Akaike value of the generalized Weibull model was less than the Weibull model. These results indicate that based on the generalized Weibull model, the variables of glomerular filtration rate, the number of antihypertensive drugs used on arrival, chronic kidney disease, albumin/creatinine ratio in urine, and gender were effective on the survival of patients.
 
Conclusion: As evidenced by the obtained results, the Akaike value of the generalized Weibull model is less than the generalized Weibull model. Therefore, the generalized Weibull model has a better fit, compared to the Weibull model.

Full-Text [PDF 1279 kb]   (814 Downloads)    
Type of Study: Original Article | Subject: اپیدمیولوژی
Received: 2020/04/19 | Accepted: 2020/08/15 | Published: 2020/07/31

References
1. 1. Kjeldsen SE. Hypertension and cardiovascular risk: general aspects. Pharmacol Res 2018;129:95-9. PMID: 29127059 [DOI:10.1016/j.phrs.2017.11.003]
2. Dahlöf B, Hansson L, Lindholm L, Schersten B, Ekbom T, Wester P. Morbidity and mortality in the Swedish trial in old patients with hypertension (STOP-Hypertension). Lancet 1991;338(8778):1281-5. PMID: 1682683 [DOI:10.1016/0140-6736(91)92589-T]
3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005;365(9455):217-23. PMID: 15652604 [DOI:10.1016/S0140-6736(05)17741-1]
4. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation 2012;125(1):e2-220. PMID: 22179539
5. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360(9349):1903-13. PMID: 12493255 [DOI:10.1016/S0140-6736(02)11911-8]
6. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med 2005;165(8):923-8. PMID: 15851645 [DOI:10.1001/archinte.165.8.923]
7. MacMahon S, Peto R, Collins R, Godwin J, Cutler J, Sorlie P, et al. Blood pressure, stroke, and coronary heart disease: part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet 1990;335(8692):765-74. PMID: 1969518 [DOI:10.1016/0140-6736(90)90878-9]
8. Vasan RS, Larson MG, Leip EP, Evans JC, O'donnell CJ, Kannel WB, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001;345(18):1291-7. PMID: 11794147 [DOI:10.1056/NEJMoa003417]
9. Verdecchia P, Angeli F. The seventh report of the joint national committee on the prevention, detection, evaluation and treatment of high blood pressure: the weapons are ready. Rev Esp Cardiol 2003;56(9):843-7. PMID: 14519269
10. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs-overview and meta-analyses. J Hypertens 2015;33(2):195-211. PMID: 25485720 [DOI:10.1097/HJH.0000000000000447]
11. Wright JM, Musini VM, Gill R. First‐line drugs for hypertension. Cochrane Database Syst Rev 2018;4(4):CD001841. PMID: 29667175 [DOI:10.1002/14651858.CD001841.pub3]
12. Shafipour V, Shafipour L, Jafari H. The Effect of the cardiac rehabilitation program on the quality of life in patients with myocardial infarction. Arak Med Univ J 2011;14(5):34-42. Link
13. Deaton C, Froelicher ES, Wu LH, Ho C, Shishani K, Jaarsma T. The global burden of cardiovascular disease. J Cardiovasc Nurs 2011;26(4 Suppl):S5-14. PMID: 21659814 [DOI:10.1097/JCN.0b013e318213efcf]
14. Shahbazian H, Baghaiee S, Shahbazian N. Study of causes, complications and mortality rate of acute renal failure. Jundishpur Sci Med J 2007;5(4):688-93. Link
15. Porta Bleda N, Gómez Melis G, Calle Rosingana ML, Malats i Riera N. Competing risks methods. Barcelona, Spain: Polytechnic University of Catalonia; 2007. Link
16. Kleinbaum DG, Klein M. Survival analysis. Berlin, Germany: Springer; 2010. Link
17. Dignam JJ, Zhang Q, Kocherginsky M. The use and interpretation of competing risks regression models. Clin Cancer Res 2012;18(8):2301-8. Link [DOI:10.1158/1078-0432.CCR-11-2097]
18. Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, Leffondre K, et al. Competing risks analyses: objectives and approaches. Eur Heart J 2014;35(42):2936-41. PMID: 24711436 [DOI:10.1093/eurheartj/ehu131]
19. Hougaard P. Analysis of multivariate survival data. Berlin, Germany: Springer Science & Business Media; 2012. Link
20. Jeong JH. A new parametric family for modelling cumulative incidence functions: application to breast cancer data. J Royal Stat Soc Series A 2006;169(2):289-303. Link [DOI:10.1111/j.1467-985X.2006.00409.x]
21. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data. Berlin, Germany: Springer Science & Business Media; 2006. Link
22. Wahed AS, Luong TM, Jeong JH. A new generalization of Weibull distribution with application to a breast cancer data set. Stat Med 2009;28(16):2027-94. PMID: 19424958 [DOI:10.1002/sim.3598]
23. Mudholkar GS, Srivastava DK, Kollia GD. A generalization of the Weibull distribution with application to the analysis of survival data. J Am Stat Assoc 1996;91(436):1575-83. Link [DOI:10.1080/01621459.1996.10476725]
24. Austin PC, Lee DS, Fine JP. Introduction to the analysis of survival data in the presence of competing risks. Circulation 2016;133(6):601-9. PMID: 26858290 [DOI:10.1161/CIRCULATIONAHA.115.017719]
25. Noordzij M, Leffondré K, van Stralen KJ, Zoccali C, Dekker FW, Jager KJ. When do we need competing risks methods for survival analysis in nephrology? Nephrol Dial Transplant 2013;28(11):2670-7. PMID: 23975843 [DOI:10.1093/ndt/gft355]
26. Jeong JH, Fine J. Direct parametric inference for the cumulative incidence function. J Royal Stat Soc Series C 2006;55(2):187-200. Link [DOI:10.1111/j.1467-9876.2006.00532.x]
27. Lau B, Cole SR, Gange SJ. Competing risk regression models for epidemiologic data. Am J Epidemiol 2009;170(2):244-56. PMID: 19494242 [DOI:10.1093/aje/kwp107]
28. Prentice RL, Kalbfleisch JD, Peterson Jr AV, Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics 1978;34(4):541-54. PMID: 373811 [DOI:10.2307/2530374]
29. Jabalameli M, Sajedi P, Khakbaz H, Taheri S. Frequency of acute renal failure in patients adimitted to Isfahan Alzahra (PBH) medical center ICU. Yafteh 2010;12(3):37-43. Link
30. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005;294(7):813-8. PMID: 16106006 [DOI:10.1001/jama.294.7.813]
31. Akbari H, Nikkhah A, Alizadeh A. Evaluation of acute renal failure and its associated factors in heart‎ surgery patients in Fatima Zahra Hospital, Sari, 2012‎. J Mazandaran Univ Med Sci 2014;24(112):97-102. Link
32. Rasmussen HH, Ibels LS. Acute renal failure multivariate analysis of causes and risk factors. Am J Med 1982;73(2):211-8. PMID: 7114078 [DOI:10.1016/0002-9343(82)90181-4]
33. Attar A, Sayadi M. Effect of chronic kidney disease oncardiovascular events: an epidemiological aspect from SPRINT trial. Iran J Kidney Dis 2019;13(5):328-36. PMID: 31705750

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb