1. 1. Bittner S, Afzali AM, Wiendl H, Meuth SG. Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Journal of visualized experiments : JoVE. 2014(86):e51275. link [
DOI:10.3791/51275]
2. Grau-Lopez L, Granada ML, Raich-Regue D, Naranjo-Gomez M, Borras-Serres FE, Martinez-Caceres E, et al. Regulatory role of vitamin D in T-cell reactivity against myelin peptides in relapsing-remitting multiple sclerosis patients. BMC Neurol. 2012;12:103 .link [
DOI:10.1186/1471-2377-12-103]
3. Kotelnikova E, Bernardo-Faura M, Silberberg G, Kiani NA, Messinis D, Melas IN, et al. Signaling networks in MS: a systems-based approach to developing new pharmacological therapies. Mult Scler. 2014;21(2):138-46. link [
DOI:10.1177/1352458514543339]
4. 4 Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011;585(23):3715-23. Link . [
DOI:10.1016/j.febslet.2011.08.004]
5. Zeinali H, Baluchnejadmojarad T, Fallah S, Sedighi M, Moradi N, Roghani M. S-allyl cysteine improves clinical and neuropathological features of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed Pharmacother. 2018;97:557-63. link [
DOI:10.1016/j.biopha.2017.10.155]
6. Disanto G, Ramagopalan SV. On the sex ratio of multiple sclerosis. Mult Scler. 2013;19(1):3-4 .link [
DOI:10.1177/1352458512447594]
7. Raphael I, Webb J, Stuve O, Haskins W, Forsthuber T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol. 2015;11(1):69-91. link [
DOI:10.1586/1744666X.2015.991315]
8. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17. link [
DOI:10.1016/S0140-6736(08)61620-7]
9. 9 Nadeem M, Sklover L, Sloane JA. Targeting remyelination treatment for multiple sclerosis. World J Neurol. 2015;5(1):5-16. link [
DOI:10.5316/wjn.v5.i1.5]
10. 10 Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274(1-2):48-53.link [
DOI:10.1016/j.jns.2008.06.029]
11. Colin-Gonzalez AL, Ali SF, Tunez I, Santamaria A. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochemistry international. 2015;89:83-91. link [
DOI:10.1016/j.neuint.2015.06.011]
12. Colin-Gonzalez AL, Santana RA, Silva-Islas CA, Chanez-Cardenas ME, Santamaria A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev. 2012;2012:907162. link [
DOI:10.1155/2012/907162]
13. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079-106. link [
DOI:10.1111/j.1476-5381.2011.01302.x]
14. Rahimi A, Faizi M, Talebi F, Noorbakhsh F, Kahrizi F, Naderi N. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience. 2015;290:279-87. link [
DOI:10.1016/j.neuroscience.2015.01.030]
15. Bayraktar O, Tekin N, Aydin O, Akyuz F, Musmul A, Burukoglu D. Effects of S-allyl cysteine on lung and liver tissue in a rat model of lipopolysaccharide-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(3):327-35 .link [
DOI:10.1007/s00210-014-1076-z]
16. Zhang F, Yang J, Jiang H, Han S. An ανβ3 integrin-binding peptide ameliorates symptoms of chronic progressive experimental autoimmune encephalomyelitis by alleviating neuroinflammatory responses in mice. J Neuroimmune Pharmacol. 2014;9(3):399-412. link [
DOI:10.1007/s11481-014-9532-6]
17. Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210-8. link [
DOI:10.1111/j.1750-3639.2007.00064.x]
18. Escribano BM, Luque E, Aguilar-Luque M, Feijoo M, Caballero-Villarraso J, Torres LA, et al. Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. European journal of pharmacology. 2017;815:266-73. link [
DOI:10.1016/j.ejphar.2017.09.025]
19. 19 Garcia E, Santana-Martinez R, Silva-Islas CA, Colin-Gonzalez AL, Galvan-Arzate S, Heras Y, et al. S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res. 2014;48(2):159-67. link [
DOI:10.3109/10715762.2013.857019]
20. Gong Z, Ye H, Huo Y, Wang L, Huang Y, Huang M, et al. S-allyl-cysteine attenuates carbon tetrachloride-induced liver fibrosis in rats by targeting STAT3/SMAD3 pathway. Am J Transl Res. 2018;10(5):1337-46 .link
21. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177(1):566-73 .link [
DOI:10.4049/jimmunol.177.1.566]
22. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases. Mediators of inflammation. 2017;2017:3908061.link [
DOI:10.1155/2017/3908061]
23. Gozes I. Activity-dependent neuroprotective protein (ADNP): from autism to Alzheimer’s disease. SpringerPlus. 2015;4(Suppl 1):L37. link [
DOI:10.1186/2193-1801-4-S1-L37]
24. Oz S, Ivashko-Pachima Y, Gozes I. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PloS one. 2012;7(12):e51458 .link [
DOI:10.1371/journal.pone.0051458]
25. Cheng X, Wang Y, Gong Y, Li F, Guo Y, Hu S, et al. Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins. Autophagy. 2016;12(8):1330-9. link [
DOI:10.1080/15548627.2016.1185590]
26. Feng X, Hou H, Zou Y, Guo L. Defective autophagy is associated with neuronal injury in a mouse model of multiple sclerosis. Bosn J Basic Med Sci. 2017;17(2):95-103 .link [
DOI:10.17305/bjbms.2017.1696]