Volume 14, Issue 10 (December 2020)                   Qom Univ Med Sci J 2020, 14(10): 76-84 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zeinali H, Baluchnejadmojarad T, Roghani M. Effect of Oral Administration of S-allyl Cysteine (the Active Ingredient in the Aged Garlic Extract) on the Symptoms of Multiple Sclerosis in the Experimental Model. Qom Univ Med Sci J 2020; 14 (10) :76-84
URL: http://journal.muq.ac.ir/article-1-3033-en.html
1- Department of Physiology, School of Medicine, Qom University of Medical Sciences , hzeinali53@gmail.com
2- Department of Physiology, School of Medicine, Iran University of Medical Sciences
3- Neurophysiology Research Center, Shahed University
Abstract:   (2113 Views)
Background and Objectives: Autoimmune inflammation of the central nervous system followed by myelin destruction,  oxidative stress, and reduced neuroprotective factors play key roles in the pathogenesis of multiple sclerosis (MS). S-allyl cysteine (SAC), an active ingredient in the aged garlic extract, has known anti-inflammatory and neuroprotective effects. Therefore, this study aimed to investigate the anti-inflammatory and neuroprotective effects of S-allyl cysteine and related mechanisms in experimental autoimmune encephalomyelitis (EAE, a validated animal model of MS).
 
Methods: C57BL/6 mice were divided into the following three groups, with each group comprising of ten animals: Group 1: Control, Group 2:  EAE induction, and Group 3: EAE induction and daily administration of SAC (EAE+SAC). The EAE induction was performed using the Hooke kit. It should be noted that daily gavage of SAC was carried out and clinical score (severity of tail and limbs paralysis) was assessed daily. The inflammation of the lumbar spinal cord was measured through hematoxylin and eosin staining. Moreover, tumor necrosis factor α (TNF-α) level in spinal cord and serum; Interleukin-17(IL-17, Inflammatory factors) level in spinal cord; Activity-dependent neuroprotector homeobox (ADNP), and Microtubule-associated Proteins 1A/1B Light Chain 3A (MAP1LC3A, neuroprotective factors) were measured using ELISA. The data were analyzed using a one-way analysis of variance.
 
Results: The daily administration of SAC significantly reduced the score of clinical paralysis on days 13 to 18 following EAE induction (from P>0.05 to P<0.01). It also significantly reduced spinal cord inflammation (P<0.01), elevated levels of TNFα in serum and spinal cord, and IL-17 in the spinal cord (P<0.05). On the other hand, daily administration of SAC elevated the reduced spinal cord levels of ADNP and MAP1LC3A (P<0.05).
 
Conclusion: Daily oral administration of SAC improved MS symptoms through the reduction of spinal inflammation and inflammatory factors, and elevation of neuroprotective factors. In addition, SAC can be utilized in the prevention and treatment of MS due to its herbal origin.
 
Full-Text [PDF 916 kb]   (647 Downloads)    
Type of Study: Original Article | Subject: فیزیولوژی
Received: 2021/01/9 | Accepted: 2021/01/23 | Published: 2020/12/30

References
1. 1. Bittner S, Afzali AM, Wiendl H, Meuth SG. Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Journal of visualized experiments : JoVE. 2014(86):e51275. link [DOI:10.3791/51275]
2. Grau-Lopez L, Granada ML, Raich-Regue D, Naranjo-Gomez M, Borras-Serres FE, Martinez-Caceres E, et al. Regulatory role of vitamin D in T-cell reactivity against myelin peptides in relapsing-remitting multiple sclerosis patients. BMC Neurol. 2012;12:103 .link [DOI:10.1186/1471-2377-12-103]
3. Kotelnikova E, Bernardo-Faura M, Silberberg G, Kiani NA, Messinis D, Melas IN, et al. Signaling networks in MS: a systems-based approach to developing new pharmacological therapies. Mult Scler. 2014;21(2):138-46. link [DOI:10.1177/1352458514543339]
4. 4 Lassmann H, van Horssen J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011;585(23):3715-23. Link . [DOI:10.1016/j.febslet.2011.08.004]
5. Zeinali H, Baluchnejadmojarad T, Fallah S, Sedighi M, Moradi N, Roghani M. S-allyl cysteine improves clinical and neuropathological features of experimental autoimmune encephalomyelitis in C57BL/6 mice. Biomed Pharmacother. 2018;97:557-63. link [DOI:10.1016/j.biopha.2017.10.155]
6. Disanto G, Ramagopalan SV. On the sex ratio of multiple sclerosis. Mult Scler. 2013;19(1):3-4 .link [DOI:10.1177/1352458512447594]
7. Raphael I, Webb J, Stuve O, Haskins W, Forsthuber T. Body fluid biomarkers in multiple sclerosis: how far we have come and how they could affect the clinic now and in the future. Expert Rev Clin Immunol. 2015;11(1):69-91. link [DOI:10.1586/1744666X.2015.991315]
8. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502-17. link [DOI:10.1016/S0140-6736(08)61620-7]
9. 9 Nadeem M, Sklover L, Sloane JA. Targeting remyelination treatment for multiple sclerosis. World J Neurol. 2015;5(1):5-16. link [DOI:10.5316/wjn.v5.i1.5]
10. 10 Gonsette RE. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. J Neurol Sci. 2008;274(1-2):48-53.link [DOI:10.1016/j.jns.2008.06.029]
11. Colin-Gonzalez AL, Ali SF, Tunez I, Santamaria A. On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: An update. Neurochemistry international. 2015;89:83-91. link [DOI:10.1016/j.neuint.2015.06.011]
12. Colin-Gonzalez AL, Santana RA, Silva-Islas CA, Chanez-Cardenas ME, Santamaria A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev. 2012;2012:907162. link [DOI:10.1155/2012/907162]
13. Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079-106. link [DOI:10.1111/j.1476-5381.2011.01302.x]
14. Rahimi A, Faizi M, Talebi F, Noorbakhsh F, Kahrizi F, Naderi N. Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience. 2015;290:279-87. link [DOI:10.1016/j.neuroscience.2015.01.030]
15. Bayraktar O, Tekin N, Aydin O, Akyuz F, Musmul A, Burukoglu D. Effects of S-allyl cysteine on lung and liver tissue in a rat model of lipopolysaccharide-induced sepsis. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(3):327-35 .link [DOI:10.1007/s00210-014-1076-z]
16. Zhang F, Yang J, Jiang H, Han S. An ανβ3 integrin-binding peptide ameliorates symptoms of chronic progressive experimental autoimmune encephalomyelitis by alleviating neuroinflammatory responses in mice. J Neuroimmune Pharmacol. 2014;9(3):399-412. link [DOI:10.1007/s11481-014-9532-6]
17. Lassmann H, Bruck W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210-8. link [DOI:10.1111/j.1750-3639.2007.00064.x]
18. Escribano BM, Luque E, Aguilar-Luque M, Feijoo M, Caballero-Villarraso J, Torres LA, et al. Dose-dependent S-allyl cysteine ameliorates multiple sclerosis disease-related pathology by reducing oxidative stress and biomarkers of dysbiosis in experimental autoimmune encephalomyelitis. European journal of pharmacology. 2017;815:266-73. link [DOI:10.1016/j.ejphar.2017.09.025]
19. 19 Garcia E, Santana-Martinez R, Silva-Islas CA, Colin-Gonzalez AL, Galvan-Arzate S, Heras Y, et al. S-allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res. 2014;48(2):159-67. link [DOI:10.3109/10715762.2013.857019]
20. Gong Z, Ye H, Huo Y, Wang L, Huang Y, Huang M, et al. S-allyl-cysteine attenuates carbon tetrachloride-induced liver fibrosis in rats by targeting STAT3/SMAD3 pathway. Am J Transl Res. 2018;10(5):1337-46 .link
21. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177(1):566-73 .link [DOI:10.4049/jimmunol.177.1.566]
22. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T. The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases. Mediators of inflammation. 2017;2017:3908061.link [DOI:10.1155/2017/3908061]
23. Gozes I. Activity-dependent neuroprotective protein (ADNP): from autism to Alzheimer’s disease. SpringerPlus. 2015;4(Suppl 1):L37. link [DOI:10.1186/2193-1801-4-S1-L37]
24. Oz S, Ivashko-Pachima Y, Gozes I. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PloS one. 2012;7(12):e51458 .link [DOI:10.1371/journal.pone.0051458]
25. Cheng X, Wang Y, Gong Y, Li F, Guo Y, Hu S, et al. Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins. Autophagy. 2016;12(8):1330-9. link [DOI:10.1080/15548627.2016.1185590]
26. Feng X, Hou H, Zou Y, Guo L. Defective autophagy is associated with neuronal injury in a mouse model of multiple sclerosis. Bosn J Basic Med Sci. 2017;17(2):95-103 .link [DOI:10.17305/bjbms.2017.1696]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb