Volume 15, Issue 5 (August 2021)                   Qom Univ Med Sci J 2021, 15(5): 368-377 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khazaei S, Soleimani M, Ahmaditafti S H, Hojati Z. Differentiation of Mesenchymal Stem Cells Into Cardiac-like Cells by Co-induction of Lentiviruses Containing Mir-1 and Myocd in Chitosan Collagen Hydrogel Scaffold. Qom Univ Med Sci J 2021; 15 (5) :368-377
URL: http://journal.muq.ac.ir/article-1-3193-en.html
1- Department of Cell and Molecular Biology, School of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
2- Department of Tissue Engineering and Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
4- Department of Tissue Engineering and Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran , z.hojati@sci.ui.ac.ir
Abstract:   (1824 Views)
Background and Objectives: Cardiovascular disease is one of the leading causes of death worldwide. Mesenchymal stem cells (MSCs) are one of the most common sources of cell-based therapies in heart regeneration. There are several approaches to differentiate MSCs into cardiac-like cells, such as genetic modification. In addition, using of 3D culture, such as hydrogels, increases the efficiency of differentiation.
Methods: In the present study, lentiviruses containing microRNA 1 (miR- 1) and myocardium (Myocd) were co-transducted to mouse adipose-derived MSCs. Three days after, transduced MSCs were transferred to a hydrogel containing chitosan and collagen. After 21 days, the differentiation of encapsulated cells was evaluated. In this regard, the expression of cardiac markers such as NK2 homeobox 5 (Nkx2-5), GATA binding protein 4 (Gata4) and troponin T type 2 (Tnnt2) at the level of gene and protein were investigated.
Results: The results of real-time quantitative polymerase chain reaction (qRT-PCR) and immunocytochemistry showed that co-induction of miR-1 and Myocd in MSCs followed by transfer to composite hydrogel increased the expression of cardiac markers.
Conclusion: The use of 3D culture such as chitosan/collagen hydrogel improves the differentiation of MSCs and subsequently obtains more mature cells for use in cell-based regenerative medicine
Full-Text [PDF 7223 kb]   (559 Downloads)    
Type of Study: Original Article | Subject: سلولی و مولکولی
Received: 2021/07/11 | Accepted: 2021/08/9 | Published: 2021/08/1

References
1. Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C, O'Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015; 6:8243. [DOI:10.1038/ncomms9243] [PMID] [PMCID] [DOI:10.1038/ncomms9243]
2. Muiesan ML, Paini A, Rosei CA, Bertacchini F, Stassaldi D, Salvetti M. Current pharmacological therapies in heart failure patients. High Blood Press Cardiovasc Prev. 2017; 24(2):107-14. [DOI:10.1007/s40292-017-0194-3] [PMID] [DOI:10.1007/s40292-017-0194-3]
3. Hénon P. Key success factors for regenerative medicine in acquired heart diseases. Stem Cell Rev Rep. 2020; 16(3):441-58. [DOI:10.1007/s12015-020-09961-0] [PMID] [PMCID] [DOI:10.1007/s12015-020-09961-0]
4. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015; 116(8):1413-30. [DOI:10.1161/CIRCRESAHA.116.303614] [PMID] [PMCID] [DOI:10.1161/CIRCRESAHA.116.303614]
5. Musialek P, Mazurek A, Jarocha D, Tekieli L, Szot W, Kostkiewicz M, et al. Myocardial regeneration strategy using Wharton's jelly mesenchymal stem cells as an off-the-shelf 'unlimited' therapeutic agent: Results from the acute myocardial infarction first-in-man study. Postepy Kardiol Interwencyjnej. 2015; 11(2):100-7. [DOI:10.5114/pwki.2015.52282] [PMID] [PMCID] [DOI:10.5114/pwki.2015.52282]
6. McGinley L, McMahon J, Strappe P, Barry F, Murphy M, O'Toole D, et al. Lentiviral vector mediated modification of mesenchymal stem cells & enhanced survival in an in vitro model of ischaemia. Stem Cell Res Ther. 2011; 2(2):12. [PMID] [PMCID] [DOI:10.1186/scrt53]
7. Satija NK, Singh VK, Verma YK, Gupta P, Sharma Sh, Afrin F, et al. Mesenchymal stem cell‐based therapy: A new paradigm in regenerative medicine. J Cell Mol Med. 2009; 13(11‐12):4385-402. [DOI:10.1111/j.1582-4934.2009.00857.x] [PMID] [PMCID] [DOI:10.1111/j.1582-4934.2009.00857.x]
8. Piubelli C, Meraviglia V, Pompilio G, D'Alessandra Y, Colombo GI, Rossini A. microRNAs and cardiac cell fate. Cells. 2014; 3(3):802- 23. [DOI:10.3390/cells3030802] [PMID] [PMCID] [DOI:10.3390/cells3030802]
9. Shen X, Pan B, Zhou H, Liu L, Lv T, Zhu J, et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway. J Biomed Sci. 2017; 24(1):29. [DOI:10.1186/s12929-017-0337-9] [PMID] [PMCID] [DOI:10.1186/s12929-017-0337-9]
10. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001; 105(7):851- 62. [DOI:10.1016/S0092-8674(01)00404-4] [PMID] [DOI:10.1016/S0092-8674(01)00404-4]
11. Fong AH, Romero-López M, Heylman CM, Keating M, Tran D, Sobrino A, et al. Three-dimensional adult cardiac extracellular matrix promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes. Tissue Eng Part A. 2016; 22(15-16):1016-25. [DOI:10.1089/ten.tea.2016.0027] [PMID] [PMCID] [DOI:10.1089/ten.tea.2016.0027]
12. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IHM, et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 2007; 100(2):263-72. [DOI:10.1161/01.RES.0000257776.05673.ff] [PMID] [DOI:10.1161/01.RES.0000257776.05673.ff]
13. Bejleri D, Davis ME. Decellularized extracellular matrix materials for cardiac repair and regeneration. Adv Healthc Mater. 2019; 8(5):e1801217. [DOI:10.1002/adhm.201801217] [PMID] [PMCID] [DOI:10.1002/adhm.201801217]
14. Fukuda J, Khademhossieni A, Yeo Y, Yang X, Yeh J, Eng G, et al. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials. 2006; 27(30):5259- 67. [DOI:10.1016/j.biomaterials.2006.05.044] [PMID] [DOI:10.1016/j.biomaterials.2006.05.044]
15. Shaghiera AD, Widiyanti P, Yusuf H. Synthesis and characterization of injectable hydrogels with varying collagen-chitosan-thymosin β4 composition for myocardial infarction therapy. J Funct Biomater. 2018; 9(2):33. [DOI:10.3390/jfb9020033] [PMID] [PMCID] [DOI:10.3390/jfb9020033]
16. Deng C, Zhang P, Vulesevic B, Kuraitis D, Li F, Yang AF, et al. A collagen-chitosan hydrogel for endothelial differentiation and angiogenesis. Tissue Eng Part A. 2010; 16(10):3099-109. [DOI:10.1089/ten.tea.2009.0504] [PMID] [DOI:10.1089/ten.tea.2009.0504]
17. Synnergren J, Améen C, Lindahl A, Olsson B, Sartipy P. Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue. Physiol Genomics. 2011; 43(10):581-94. [DOI:10.1152/physiolgenomics.00074.2010] [PMID] [DOI:10.1152/physiolgenomics.00074.2010]
18. Zhao XL, Yang B, Ma LN, Dong YH. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2016; 44(7):1665-70. [DOI:10.3109/21691401.2015.1080168] [PMID] [DOI:10.3109/21691401.2015.1080168]
19. Christoforou N, Chakraborty S, Kirkton RD, Adler AF, Addis RC, Leong KW. Core transcription factors, microRNAs, and small molecules drive transdifferentiation of human fibroblasts towards the cardiac cell lineage. Sci Rep. 2017; 7:40285. [DOI:10.1038/srep40285] [PMID] [PMCID] [DOI:10.1038/srep40285]
20. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018; 556(7700):239-43. [DOI:10.1038/s41586-018-0016-3] [PMID] [PMCID] [DOI:10.1038/s41586-018-0016-3]
21. Synnergren J, Ameen C, Lindahl A, Olsson B, Sartipy P. Expression of microRNAs and their target mRNAs in human stem cell-derived cardiomyocyte clusters and in heart tissue. Physiol. Genomics. 2011; 43(10):581-594. [DOI:10.1152/physiolgenomics.00074.2010] [DOI:10.1152/physiolgenomics.00074.2010]
22. Zhao X, Yang B, Ma L, Dong Y. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells. Artif Cells Nanomed Biotechnol. 2016; 44(7):1665-70. [DOI:10.3109/21691401.2015.1080168] [DOI:10.3109/21691401.2015.1080168]
23. Christoforou N, Chakraborty S, Kirkton RD, Adler AF, Addis RC, Leong KW. Core transcription factors, microRNAs, and small molecules drive transdifferentiation of human fibroblasts towards the cardiac cell lineage. Sci Rep. 2017; 7(1):1-5. https://www.nature.com/articles/srep40285 [DOI:10.1038/srep40285]
24. Ronaldson-Bouchard K, Ma s, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018; 556(7700):239-43. [DOI:10.1038/s41586-018-0016-3] [DOI:10.1038/s41586-018-0016-3]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb