Volume 17 -                   Qom Univ Med Sci J 2023, 17 - : 378-391 | Back to browse issues page

Ethics code: این مقاله مسخرج از پایان نامه ای می باشد ، که در آن کارآ


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Jamshidi Z. The Effect of Gold Nanoparticles and Sea Cucumber Alcoholic Extract on Liver Cancer Cells. Qom Univ Med Sci J 2023; 17 : 2780.1
URL: http://journal.muq.ac.ir/article-1-3617-en.html
1- Department of Biology, Faculty of Basic Sciences, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran. , mh_mohamadi@yahoo.com
2- Department of Animal Physiology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
Abstract:   (416 Views)
Background and Objectives: Sea cucumber has antibacterial, fungal, anti-viral, and anti-cancer compounds that can be used for medicinal purposes. This research investigates the effect of gold nanoparticles and sea cucumber alcoholic extract on liver cancer cells.
Methods: Sea cucumber samples were collected from the tidal zone of Owli village, Dayyer county, Bushehr City, southern Iran. Initial identification was done by extracting spicules using the FAO identification key. The anticancer effects of the prepared alcoholic extract (10, 20, 40, 60, 80, 100 µg/mL) and gold nanoparticles (0.5, 2, 4, 8, 10, 16 nM) were studied on the liver cancer cell line (Hep-G2) using the MTT assay, 24, 48 and 72 hours after exposure. Statistical analyses were performed in SPSS software, version 21.
Results: The best effect of sea cucumber alcoholic extract and gold nanoparticles on the Hep-G2 was seen 72 hours after exposure. The highest cytotoxic effect of sea cucumber alcoholic extract on the cell line was seen at a dose of 100 μg/mL with 89.2% growth inhibition. The highest cytotoxic effect of gold nanoparticles was seen at a dose of 16 nM with 87.3% growth inhibition. The 100-μg/mL alcoholic extract and 16-nM nanoparticles together showed 95.4% growth inhibition.
Conclusion: Due to the significant cytotoxic effect of sea cucumber alcoholic extract and gold nanoparticles on liver cancer cells, these compounds can be used as suitable candidates for producing anti-cancer drugs.
Article number: 2780.1
Full-Text [PDF 4906 kb]   (262 Downloads) |   |   Full-Text (HTML)  (326 Views)  
Type of Study: Original Article | Subject: علوم پایه
Received: 2022/11/29 | Accepted: 2023/07/31 | Published: 2023/08/1

References
1. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022; 12(1):31-46. [DOI:10.1158/2159-8290.CD-21-1059 ‌] [PMID] [DOI:10.1158/2159-8290.CD-21-1059]
2. Oberndorfer F, Müllauer L. Molecular pathology of lung cancer: Current status and perspectives. Curr Opin Oncol. 2018; 30(2):69-76. [DOI:10.1097/CCO.0000000000000429] [PMID] [DOI:10.1097/CCO.0000000000000429]
3. Chu X, Xue P, Zhu S. Management of chemotherapy dose intensity for metastatic colorectal cancer. Oncol Lett. 2022; 23(5):141. [DOI:10.3892/ol.2022.13261] [PMID] [DOI:10.3892/ol.2022.13261]
4. Rockey DC, Friedman SL. Fibrosis regression after eradication of hepatitis C virus: From bench to bedside. Gastroenterology. 2021; 160(5):1502-20.e1. [DOI:10.1053/j.gastro.2020.09.065] [PMID] [DOI:10.1053/j.gastro.2020.09.065]
5. Neuberger J, Patel J, Caldwell H, Davies S, Hebditch V, Hollywood C, et al. Guidelines on the use of liver biopsy in clinical practice from the British society of gastroenterology, the royal college of radiologists and the royal college of pathology. Gut. 2020; 69(8):1382-403. [DOI:10.1136/gutjnl-2020-321299] [PMID] [DOI:10.1136/gutjnl-2020-321299]
6. Barham WB, Figueroa R, Phillips IA, Hyams KC. Chronic liver disease in Peru: Role of viral hepatitis. J Med Virol. 1994; 42(2):129-32. [DOI:10.1002/jmv.1890420206] [PMID] [DOI:10.1002/jmv.1890420206]
7. Attal N, Marrero E, Thompson KJ, McKillop IH. Role of AMPK-SREBP signaling in regulating fatty acid binding-4 (FABP4) expression following ethanol metabolism. Biology. 2022; 11(11):1613. [DOI:10.3390/biology11111613] [PMID] [DOI:10.3390/biology11111613]
8. Faulkner DJ. Academic chemistry and the discovery of bioactive marine natural products. In: Attaway DH, Zaborsky OR, editors. Pharmaceutical and bioactive natural products. Berlin: Springer; 1993. [DOI:10.1007/978-1-4899-2391-2_13] [DOI:10.1007/978-1-4899-2391-2_13]
9. National Research Council. Guidance for the description of animal research in scientific publications. Washington: National Academies Press; 2011. [Link]
10. Koh EG. Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecology. 1997; 23(2):379-98. [DOI:10.1023/B:JOEC.0000006366.58633.f4] [DOI:10.1023/B:JOEC.0000006366.58633.f4]
11. Matulja D, Grbčić P, Bojanić K, Topić-Popović N, Čož-Rakovac R, Laclef S, et al. Chemical evaluation, antioxidant, antiproliferative, anti-inflammatory and antibacterial activities of organic extract and semi-purified fractions of the adriatic sea fan, eunicella cavolini. Molecules. 2021; 26(19):5751. [DOI:10.3390/molecules26195751] [PMID] [DOI:10.3390/molecules26195751]
12. Silvester MMB, Adimy PSS, Chellappa JP, Mani PA, Rajam BRM. Investigation of Lectins from Anomuran and Brachyuran Crabs. In: Aquatic lectins: Elumalai P, Vaseeharan B, Lakshmi S, editors. Immune defense: Biological recognition and molecular advancements. Berlin: Springer; 2022. [DOI:10.1007/978-981-19-0432-5_6] [DOI:10.1007/978-981-19-0432-5_6]
13. Findlay C, Smith VJ. Antimicrobial factors in solitary ascidians. Fish Shellfish Immunol. 1995; 5(8):645-58. [DOI:10.1016/S1050-4648(95)80047-6] [DOI:10.1016/S1050-4648(95)80047-6]
14. Stokes RB. Attribution of the taxon name Echinodermata to Klein, 1778. Zootaxa. 202; 5061(1):199-200. [DOI:10.11646/zootaxa.5061.1.13] [PMID] [DOI:10.11646/zootaxa.5061.1.13]
15. Keipour S, Emtyazjoo M, Ghaderian SMH, Eghtesadi Araghi P. Cytotoxic and antibacterial activities of Holothuria (Mertenssiothuria) leucospilota extracts. Iran J Fish Sci. 2023; 22(1):138-55. [DOI:10.22092/ijfs.2023.128642]
16. Fredalina BD, Ridzwan BH, Abidin AA, Kaswandi MA, Zaiton H, Zali I, et al. Fatty acid compositions in local sea cucumber, stichopus chloronotus, for wound healing. Gen Pharmacol. 1999; 33(4):337-40. [DOI:10.1016/S0306-3623(98)00253-5] [PMID] [DOI:10.1016/S0306-3623(98)00253-5]
17. Renda G, Gökkaya İ, Şöhretoğlu D. Immunomodulatory properties of triterpenes. Phytochem Rev. 2022; 21(2):537-63. [DOI:10.1007/s11101-021-09785-x] [PMID] [DOI:10.1007/s11101-021-09785-x]
18. Li M, Gao Y, Qi YX, Song ZY, Li ZB, Lin YT, et al. Assessment of the nutritional value of cultured sea cucumber Apostichopus japonicus. J Aquat Food Prod Technol. 2021; 30(7):868-79. [DOI:10.1080/10498850.2021.1949769] [DOI:10.1080/10498850.2021.1949769]
19. Wen J, Hu C, Fan S. Chemical composition and nutritional quality of sea cucumbers. J Sci Food Agric. 2010; 90(14):2469-74. [DOI:10.1002/jsfa.4108] [PMID] [DOI:10.1002/jsfa.4108]
20. Ru R, Guo Y, Mao J, Yu Z, Huang W, Cao X, et al. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug. Nutrients. 2022; 14(4):786. [DOI:10.3390/nu14040786] [PMID] [DOI:10.3390/nu14040786]
21. Vieira RP, Mulloy B, Mourão PA. Structure of a fucose-branched chondroitin sulfate from sea cucumber. Evidence for the presence of 3-O-sulfo-beta-D-glucuronosyl residues. J Biol Chem. 1991; 266(21):13530-6. [DOI:10.1016/S0021-9258(18)92730-4] [PMID] [DOI:10.1016/S0021-9258(18)92730-4]
22. Wang H, He D, Duan L, Lv L, Gao Q, Wang Y, et al. In vivo anticoagulant and antithrombic activity of depolymerized glycosaminoglycan from apostichopus japonicus and dynamic effect-exposure relationship in rat plasma. Mar Drugs. 2022; 20(10):631. [DOI:10.3390/md20100631] [PMID] [DOI:10.3390/md20100631]
23. Rahman MA, Ismail M, Parvez M, Asadujjaman M, Ashik AA, Molla MHR. Echinoderm fisheries: Their culture, conservation, bioactive compounds and therapeutic applications. J Biol Stud. 2022; 5(3):413-43. [Link] [DOI:10.62400/jbs.v5i3.7053]
24. Cong L, Yang X, Wang X, Tada M, Lu M, Liu H, et al. Characterization of an i-type lysozyme gene from the sea cucumber Stichopus japonicus, and enzymatic and nonenzymatic antimicrobial activities of its recombinant protein. J Biosci Bioeng. 2009; 107(6):583-8. [DOI:10.1016/j.jbiosc.2009.01.016] [PMID] [DOI:10.1016/j.jbiosc.2009.01.016]
25. Costa BB, Gianelli JLD, Moreira TA, Soares AR, Glauser BF, Mourão PAS, et al. Partial characterization and anticoagulant activity of sulfated galactan from the green seaweed Halimeda opuntia. An Acad Bras Cienc. 2023; 95(2):e20211002. [DOI:10.1590/0001-3765202320211002] [PMID] [DOI:10.1590/0001-3765202320211002]
26. Yurasakpong L, Apisawetakan S, Pranweerapaiboon K, Sobhon P, Chaithirayanon K. Holothuria scabra Extract Induces cell apoptosis and suppresses warburg effect by down-regulating Akt/mTOR/HIF-1 Axis in MDA-MB-231 breast cancer cells. Nutr Cancer. 2021; 73(10):1964-75. [DOI:10.1080/01635581.2020.1814825] [PMID] [DOI:10.1080/01635581.2020.1814825]
27. Mamelona J, Pelletier E, Girard-Lalancette K, Legault J, Karboune S, Kermasha S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 2007; 104(3):1040-7. [DOI:10.1016/j.foodchem.2007.01.016] [DOI:10.1016/j.foodchem.2007.01.016]
28. Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, Saari N. Actinopyga lecanora hydrolysates as natural antibacterial agents. Int J Mol Sci. 2012; 13(12):16796-811. [DOI:10.3390/ijms131216796] [PMID] [DOI:10.3390/ijms131216796]
29. Hossain A, Dave D, Shahidi F. Northern sea cucumber (cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector. Mar Drugs. 2020; 18(5):274. [DOI:10.3390/md18050274] [PMID] [DOI:10.3390/md18050274]
30. Ahmed MR, Venkateshwarlu U, Jayakumar R. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials. 2004; 25(13):2585-94. [DOI:10.1016/j.biomaterials.2003.09.075] [PMID] [DOI:10.1016/j.biomaterials.2003.09.075]
31. Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods--a review. Mar Drugs. 2011; 9(10):1761-805. [DOI:10.3390/md9101761] [PMID] [DOI:10.3390/md9101761]
32. Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther. 2022; 22(7):895-909. [DOI:10.1080/14712598.2022.2088277] [PMID] [DOI:10.1080/14712598.2022.2088277]
33. Grossman JH, McNeil SE. Nanotechnology in cancer medicine. Phys Today. 2012; 65(8):38. [DOI:10.1063/PT.3.1678] [DOI:10.1063/PT.3.1678]
34. Pustovalov V, Babenko V. Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser phys lett. 2004; 1(10):516-20. [DOI:10.1002/lapl.200410111] [DOI:10.1002/lapl.200410111]
35. Kus-Liśkiewicz M, Fickers P, Ben Tahar I. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int J Mol Sci. 2021; 22(20):10952. [DOI:10.3390/ijms222010952] [PMID] [DOI:10.3390/ijms222010952]
36. D'Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology. 2021; 32(19):192001. [DOI:10.1088/1361-6528/abe1ed] [PMID] [DOI:10.1088/1361-6528/abe1ed]
37. Wang J, Wu X, Shen P, Wang J, Shen Y, Shen Y, et al. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int J Nanomedicine. 2020; 15:1903-14. [DOI:10.2147/IJN.S239751] [PMID] [DOI:10.2147/IJN.S239751]
38. Pal A. Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule. Mater Lett. 2004; 58(3-4):529-34. [DOI:10.1016/S0167-577X(03)00540-8] [DOI:10.1016/S0167-577X(03)00540-8]
39. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160(1):1-40. [DOI:10.1016/j.cbi.2005.12.009] [PMID] [DOI:10.1016/j.cbi.2005.12.009]
40. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004; 2(1):3. [DOI:10.1186/1477-3155-2-3] [PMID] [DOI:10.1186/1477-3155-2-3]
41. Clark AM, Rowe FWE. Monograph of shallow water indo west pacific echinoderms. London: British Museum; 2009. [Link]
42. Khoramizadeh MR, Falak R. [Fundamentals and preliminary principles of cell culture techniques (Persian)]. Tehran: Tehran University of Medical Sciences; 2009. [Link]
43. Kim SK, Himaya SW. Triterpene glycosides from sea cucumbers and their biological activities. Adv Food Nutr Res. 2012; 65:297-319. [DOI:10.1016/B978-0-12-416003-3.00020-2] [PMID] [DOI:10.1016/B978-0-12-416003-3.00020-2]
44. Althunibat OY, Ridzwan BH, Taher M, Daud JM, Jauhari Arief Ichwan S, Qaralleh H. Antioxidant and cytotoxic properties of two sea cucumbers, Holothuria edulis lesson and Stichopus horrens Selenka. Acta Biol Hung. 2013; 64(1):10-20. [DOI:10.1556/ABiol.64.2013.1.2] [PMID] [DOI:10.1556/ABiol.64.2013.1.2]
45. Chludil HD, Murray AP, Seldes AM, Maier MS. Biologically active triterpene glycosides from sea cucumbers (Holothuroidea, Echinodermata). Stud nat prod chem. 2003; 28(Part I):587-615. [DOI:10.1016/S1572-5995(03)80150-3] [DOI:10.1016/S1572-5995(03)80150-3]
46. Moustafa RKA, Wu Y, El-Sayed M. Gold-Nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C. 2019; 123(25):15375-93. [DOI:10.1021/acs.jpcc.9b01961] [DOI:10.1021/acs.jpcc.9b01961]
47. Wang S, Song Y, Cao K, Zhang L, Fang X, Chen F, et al. Photothermal therapy mediated by gold nanocages composed of anti-PDL1 and galunisertib for improved synergistic immunotherapy in colorectal cancer. Acta Biomater. 2021; 134:621-32. [DOI:10.1016/j.actbio.2021.07.051] [PMID] [DOI:10.1016/j.actbio.2021.07.051]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb