Volume 18 -                   Qom Univ Med Sci J 2024, 18 - : 0-0 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Honari H, Aghaie S M, Hajinormohamadi A, Samadpour Shahrak M H. Investigating the Immunogenicity of C-CFTXB Antigen Obtained From the Jellyfish (Chironex fleckeri) in Syrian Rats. Qom Univ Med Sci J 2024; 18 : 1360.3
URL: http://journal.muq.ac.ir/article-1-3844-en.html
1- Department of of Biology, School of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran. , honari.hosein@gmail.com
2- Department of of Biology, School of Basic Sciences, Imam Hossein Comprehensive University, Tehran, Iran.
Abstract:   (517 Views)
Background and Objectives: The most lethal jellyfish are the Chironex fleckeri. Their stings are serious threat with economic and health implications. Nanoparticles have the ability to load a wide range of small medicinal and biological molecules. The small size of nanoparticles, due to the increase in the contact surface with the epithelial surface, has a greater potential for non-specific absorption into the cells. This study aims to assess the expression level of C-CFTXB protein in E. coli loaded to poly lactic-co-glycolic acid (PLGA) polymer to investigate its immunogenicity in Syrian rats.
Methods: The expression of C-CFTXB gene was assessed by isopropyl β-D-1-thiogalactopyranoside induction and the recombinant protein was confirmed by the western blot technique. The antigen was loaded to PLGA polymer. The size and zeta potential of nanoparticles containing protein were measured. Protein along with adjuvant PLGA nanoparticles in PBS were injected into the animal groups twice and four times. The amount of antibody in their serum was measured by ELISA test. In the end, the rats were challenged with Rhopilema nomadica jellyfish venom. Duncan’s test was used for statistical analysis.
Results: The size and zeta potential of nanoparticles containing protein were 200 nm and -20.2 mV, respectively. Electron microscope images showed that the nanoparticles were spherical. The results of the challenge test showed that the immunized rats tolerated 50×LD50 of jellyfish venom after 60 days.
Conclusion: Considering the lack of cardiotoxicity and neurotoxicity of C-CfTXB recombinant protein in rats, this antigen can be considered as a candidate vaccine against jellyfish venom.
Article number: 1360.3
Full-Text [PDF 3939 kb]   (261 Downloads) |   |   Full-Text (HTML)  (116 Views)  
Type of Study: Original Article | Subject: ایمونولوژی
Received: 2023/10/28 | Accepted: 2023/12/5 | Published: 2024/04/29

References
1. Parviz M, Nikpour Y, Taghavi Moghadam A, Ghanemi K. [Fractionation comparison of Persian Gulf jellyfish nematocyst venom by two methods of chromatography (Persian)]. J Mar Sci Technol. 2017; 15(4):26-32. [DOI:10.22113/jmst.2017.14761]
2. Currie BJ. Marine antivenoms. J Toxicol Clin Toxicol. 2003;41(3):301-8. [DOI:10.1081/CLT-120021115] [PMID] [DOI:10.1081/CLT-120021115]
3. Alam MJ, Ashraf KU. Prediction of an epitope-based computational vaccine strategy for gaining concurrent immunization against the venom proteins of Australian box jellyfish. Toxicol Int. 2013; 20(3):235-53. [PMID] [DOI:10.4103/0971-6580.121677]
4. Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel). 2013; 6(1):108-51. [DOI:10.3390/toxins6010108] [PMID] [DOI:10.3390/toxins6010108]
5. Mariottini GL. Hemolytic venoms from marine cnidarian jellyfish - an overview. J Venom Res. 2014; 5:22-32. [PMID]
6. Ponce D, Brinkman DL, Luna-Ramírez K, Wright CE, Dorantes-Aranda JJ. Comparative study of the toxic effects of Chrysaora quinquecirrha (cnidaria: Scyphozoa) and chironex fleckeri (cnidaria: cubozoa) venoms using cell-based assays. Toxicon. 2015; 106:57-67. [DOI:10.1016/j.toxicon.2015.09.014] [PMID] [DOI:10.1016/j.toxicon.2015.09.014]
7. Honari H, Aghaie SM, Hosseinzade M. Subcloning and expression of the chimeric antigen C-CFTX1-STxB of the jellyfish venom and its antigenicity assessment in Syrian mice (Persian)]. J Ilam Univ Med Sci. 2019; 27(5):24-36. [DOI:10.29252/sjimu.27.5.24] [DOI:10.29252/sjimu.27.5.24]
8. Jafari H, Tamadoni Jahromi S, Zargan J, Zamani E, Ranjbar R, Honari H. Cloning and Expression of N-CFTX-1 antigen from chironex fleckeri in escherichia coli and determination of immunogenicity in mice. Iran J Public Health. 2021; 50(2):376-83. [DOI:10.18502/ijph.v50i2.5355] [PMID] [DOI:10.18502/ijph.v50i2.5355]
9. Honari H, Aghaie SM, Jalilpour H. [Immunogenicity of N-CfTX-2 antigen of chironex fleckeri jellyfish in mice (Persian)]. Qom Univ Med Sci J. 2018; 12(9):47-57. [DOI:10.29252/qums.12.9.47] [DOI:10.29252/qums.12.9.47]
10. King GK. Acute analgesia and cosmetic benefits of box-jellyfish antivenom. Med J Aust. 1991; 154(5):365-6. [DOI:10.5694/j.1326-5377.1991.tb112903.x] [PMID] [DOI:10.5694/j.1326-5377.1991.tb112903.x]
11. Honari H, Aghaie SM, Hoseinzadeh M. [C-CfTXA-STxB chimeric antigen loading in PLA-PEG-PLA tri-block copolymers and its immunization in mice (Persian)]. Koomesh. 2022; 24(4):538-43.‌ [Link]
12. Yan Y, Liu X, Li Q, Chu X, Tian J, Wu N. Effect of rare codons in C-terminal of green fluorescent protein on protein production in Escherichia coli. Protein Expr Purif. 2018; 149:23-30. [PMID] [DOI:10.1016/j.pep.2018.04.011]
13. Alexaki A, Kames J, Holcomb DD, Athey J, Santana-Quintero LV, Lam PVN, et al. Codon and codon-pair usage tables (CoCoPUTs): Facilitating genetic variation analyses and recombinant gene design. J Mol Biol. 2019; 431(13):2434-41. [PMID] [DOI:10.1016/j.jmb.2019.04.021]
14. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003; 31(13):3784-8. [PMID] [DOI:10.1093/nar/gkg563]
15. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editors. The proteomics protocols handbook. Springer Protocols Handbooks. New Jersey: Humana Press; 2005. [Link] [DOI:10.1385/1-59259-890-0:571]
16. Doytchinova IA, Flower DR. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007; 8:1-7. [Link] [DOI:10.1186/1471-2105-8-4]
17. Sambrook J, Russell DW. Directional cloning into plasmid vectors. CSH Protoc. 2006; 2006(1):pdb.prot3919. [DOI:10.1101/pdb.prot3919] [PMID] [DOI:10.1101/pdb.prot3919]
18. Tonello F, Pellizzari R, Pasqualato S, Grandi G, Peggion E, Montecucco C. Recombinant and truncated tetanus neurotoxin light chain: Cloning, expression, purification, and proteolytic activity. Protein Expr Purif. 1999; 15(2):221-7. [DOI:10.1006/prep.1998.1007] [PMID] [DOI:10.1006/prep.1998.1007]
19. Brinkman DL, Konstantakopoulos N, McInerney BV, Mulvenna J, Seymour JE, Isbister GK, et al. Chironex fleckeri (box jellyfish) venom proteins: Expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. J Biol Chem. 2014; 289(8):4798-812. [DOI:10.1074/jbc.M113.534149] [PMID] [DOI:10.1074/jbc.M113.534149]
20. Rual F. [Marine life envenomations: Example in New Caledonia (French)]. Med Trop (Mars). 1999; 59(3):287-97. [PMID]
21. Brinkman DL, Burnell JN. Biochemical and molecular characterisation of cubozoan protein toxins. Toxicon. 2009; 54(8):1162-73. [DOI:10.1016/j.toxicon.2009.02.006] [PMID] [DOI:10.1016/j.toxicon.2009.02.006]
22. Brinkman D, Burnell J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon. 2007; 50(6):850-60. [DOI:10.1016/j.toxicon.2007.06.016] [PMID] [DOI:10.1016/j.toxicon.2007.06.016]
23. Jafari H, Honari H, Zargan J, Tamadoni Jahromi S. Extraction the venom of Rhopilema nomadica from the Persian Gulf coast and the investigation of its hemolytical activity. Yafte 2019; 21(3):86-95.‌ [Link]
24. Jafari H, Honari H, Zargan J, Jahromi St. Identification and hemolytic activity of jellyfish (Rhopilema sp., Scyphozoa: Rhizostomeae) venom from the Persian Gulf and Oman Sea. Biodiversitas J Biol Divers. 2019 Apr 2;20(4):1228-32. [DOI:10.13057/biodiv/d200440] [DOI:10.13057/biodiv/d200440]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb