Volume 14, Issue 2 (April 2020)                   Qom Univ Med Sci J 2020, 14(2): 13-23 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdossalami E, Neamati A, Ardalan T. Investigation of Anti-Angiogenesis Properties of Cerium Oxide Nanoparticles Synthesized by Green Method from Persicaria bistorta Plant. Qom Univ Med Sci J 2020; 14 (2) :13-23
URL: http://journal.muq.ac.ir/article-1-2721-en.html
1- Department of Biology, Mashhad Branch, Islamic Azad University
2- Department of Biology, Mashhad Branch, Islamic Azad University , neamati.ali@gmail.com
3- Department of Chemistry, Mashhad Branch, Islamic Azad University
Abstract:   (3613 Views)
Background and Objectives: Nanoparticles have a wide range of applications, such as environmental, pharmaceutical, nutritional, diagnostic and therapeutic, cosmetics, agricultural, energy, textile, and electronics applications. This study aimed to investigate the anti-angiogenesis properties of cerium oxide nanoparticles synthesized by green method from Persicaria bistorta Plant. Angiogenesis refers to the process of formation of new blood vessels from pre-existing blood vessels, which is important for the normal growth and development of the body. Persicaria bistorta is a perennial plant that its height is slightly less than 1 m and in some areas is very short and up to 20 cm. One of the distinct characteristics of the plant is its thick underground stem that is cylindral clinging and its outer surface is covered by a lot of beads with medicinal uses.
 
Methods: In this study, chick chorioallantoic membrane was treated with cerium oxide nanoparticles synthesized by green method from Persicaria bistorta plant (CAM test). Comparison of the results in the groups, was performed by SPSS software.
 
Results: The obtained data showed that the number and length of the vessels formed during 12 days after the treatment with nanoparticles significantly decreased.
 
Conclusion: Cerium oxide nanoparticles synthesized by green method from Persicaria bistorta plan can be effective in the treatment of angiogenesis-related diseases, including cancer, through reduction of the angiogenesis process.
 
Full-Text [PDF 783 kb]   (1062 Downloads)    
Type of Study: Original Article | Subject: بیوشیمی بالینی-عمومی
Received: 2020/01/20 | Accepted: 2020/04/25 | Published: 2020/05/30

References
1. Carretero A, León Z, García-Cañaveras JC, Zaragoza Á, Gómez-Lechón MJ, Donato MT, et al. In vitro/in vivo screening of oxidative homeostasis and damage to DNA, protein, and lipids using UPLC/MS-MS. Anal Bioanal Chem 2014;406(22):5465-76. PMID: 24969468 [DOI:10.1007/s00216-014-7983-5]
2. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 2011;3(4):1411-20. PMID: 21369578 [DOI:10.1039/c0nr00875c]
3. Liying HE, Yumin SU, Lanhong J, Shikao SH. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies: a review. J Rare Earths 2015;33(8):791-9. Link [DOI:10.1016/S1002-0721(14)60486-5]
4. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene 2003;22(42):6549-56. PMID: 14528279 [DOI:10.1038/sj.onc.1206816]
5. Fam PN, Verma S, Kutryk M, Stewart JD. Clinician guide to angiogenesis. Circulation 2003;108(21):2613-8. PMID: 14638526 [DOI:10.1161/01.CIR.0000102939.04279.75]
6. Folkman J. Proceedings: tumor angiogenesis factor. Cancer Res 1974;34(8):2109-13. PMID: 4842257
7. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res 2001;49(3):507-21. PMID: 11166264 [DOI:10.1016/S0008-6363(00)00281-9]
8. Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc) 2008;73(7):751-62. PMID: 18707583 [DOI:10.1134/S0006297908070031]
9. Ucuzian AA, Gassman AA, East AT, Greisler HP. Molecular mediators of angiogenesis. J Burn Care Res 2010;31(1):158-75. PMID: 20061852 [DOI:10.1097/BCR.0b013e3181c7ed82]
10. Ruhrberg C. Endogenous inhibitors of angiogenesis. J Cell Sci 2001;14(Pt 18):3215-6. PMID: 11591810
11. Martinez A. A new family of angiogenic factors. Cancer Lett 2006;236(2):157-63. PMID: 15927357 [DOI:10.1016/j.canlet.2005.04.008]
12. Welti J, Loges S, Dimmeler S, Carmeliet P. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 2013;123(8):3190-200. PMID: 23908119 [DOI:10.1172/JCI70212]
13. Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch 2009;457(5):963-77. PMID: 18704490 [DOI:10.1007/s00424-008-0563-9]
14. Shibuya M. VEGF-VEGFR signals in health and disease. Biomol Ther (Seoul) 2014;22(1):1-9. PMID: 24596615 [DOI:10.4062/biomolther.2013.113]
15. Friesel RE, Maciag T. Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 1995;9(10):919-25. PMID: 7542215 [DOI:10.1096/fasebj.9.10.7542215]
16. Pasquet M, Golzio M, Mery E, Rafii A, Benabbou N, Mirshahi P, et al. Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis. Int J Cancer 2010;126(9):2090-101. PMID: 19739074 [DOI:10.1002/ijc.24886]
17. Semenza LG. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 2007;102(4):840-7. PMID: 17891779 [DOI:10.1002/jcb.21523]
18. Heyadri M, Hashempur MH, Ayati MH, Quintern D, Nimrouzi M, Mosavat SH. The use of Chinese herbal drugs in Islamic medicine. J Integr Med 2015;13(6):363-7. PMID: 26559361 [DOI:10.1016/S2095-4964(15)60205-9]
19. Lokman NA, Elder AS, Ricciardelli C, Oehler MK. Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci 2012;13(8):9959-70. PMID: 22949841 [DOI:10.3390/ijms13089959]
20. Ramezani T, Baharara J. A review on angiogenesis in tumor. J Cell Tissue 2014;5(1):89-100. Link [DOI:10.5899/2014/ijcmb-00015]
21. Huang D, Lan H, Liu F, Wang S, Chen X, Jin K, et al. Anti-angiogenesis or pro-angiogenesis for cancer treatment: focus on drug distribution. Int J Clin Exp Med 2015;8(6):8369-76. PMID: 26309490
22. Mawalla B, Yuan X, Luo X, Chalya PL. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: a systematic review of phase II and III clinical trials. BMC Res Notes 2018;11(1):21. PMID: 29329598 [DOI:10.1186/s13104-018-3137-8]
23. Kong DH, Kim MR, Jang JH, Na HJ, Lee S. A review of anti-angiogenic targets for monoclonal antibody cancer therapy. Int J Mol Sci 2017;18(8):E1786. PMID: 28817103 [DOI:10.3390/ijms18081786]
24. Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TX, et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 2012;33(31):7746-55. PMID: 22858004 [DOI:10.1016/j.biomaterials.2012.07.019]
25. Giri S, Karakoti A, Graham RP, Maguire JL, Reilly CM, Seal S, et al. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer. PloS One 2013;8(1):e54578. PMID: 23382918 [DOI:10.1371/journal.pone.0054578]
26. Safavi E, Homayouni TM, Karimi E. Investigation of antiangiogenic properties of green ZnO nanoparticles synthesized by root extract of persicaria bistorta. J Ilam Univ Med Sci 2018;26(2):45-56. Link [DOI:10.29252/sjimu.26.2.45]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb