Volume 14, Issue 11 (January 2021)                   Qom Univ Med Sci J 2021, 14(11): 20-29 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajimohammadjafar tehrania M, Ale-Ebrahim M, Falahati M, Zarabiyan S. In Vitro Evaluation of Cytotoxic Effects of Nickel Oxide Nanoparticles on Human Neuroblastoma Cell Line (SH-SY5Y). Qom Univ Med Sci J 2021; 14 (11) :20-29
URL: http://journal.muq.ac.ir/article-1-2801-en.html
1- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
2- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran. , mahsa.alebrahim@yahoo.com
3- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
Abstract:   (2158 Views)
Background and Objectives: Despite the many applications of nickel oxide nanoparticles (Nio NPs) in industry and biomedicine, limited studies have been performed in the case of the cytotoxicity of these nanoparticles onnervous system yet. In many neurobiological studies, the human neuroblastoma cells (SH-SY5Y) wich have the ability to become adult human neurons have been used. The aim of the present study was to evaluate the cytotoxicity effects of nickel oxide nanoparticles on human neuroblastoma cell line (SH-SY5Y) in vitro.
 
Methods: The effect of different doses of NiO NPs (0, 1, 10, 20, 50, 100 μg/ml) on SH-SY5Y cell line was determined by MTT, lactate dehydrogenase (LDH), and caspase-3 activity tests. Statistical analysis was performed by using SPSS software and student t-test.
 
Results: Based on the results of MTT test, the viability rate of SH-SY5Y cells were decreased dose dependently after 24 hours treatment with NiO NPs, compared with control group. While there was no significant increase in levels of LDH enzyme compared with control group. The activity of caspase-3 enzyme was also significantly increased in a dose dependent pattern of nanoparticles.
 
Conclusion: The results of the present study showed that the Nickel oxide nanoparticles do not cause membrane damage in SH-SY5Y cells. While these nanoparticles induce their toxic effects by damaging the mitochondrial membrane, increasing the caspase 3 activity, and activating the apoptotic pathway.
 
Full-Text [PDF 764 kb]   (761 Downloads)    
Type of Study: Original Article | Subject: سلولی و مولکولی
Received: 2020/04/23 | Accepted: 2021/02/14 | Published: 2021/01/29

References
1. 1. Sriram K, Lin GX, Jefferson AM, Roberts JR, Wirth O, Hayashi Y, et al. Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB J 2010;24(12):4989-5002. DOI: 10.1096/fj.10-163964 [DOI:10.1096/fj.10-163964]
2. Vimala Rani JD, Kamatchi S, Dhathathreyan A. Nanoparticles of nickel oxide and nickel hydroxide using lyophilisomes of fibrinogen as template. J Colloid Interface Sci 2010;341(1):48-52. DOI: 10.1016/j.jcis.2009.09.006 [DOI:10.1016/j.jcis.2009.09.006]
3. Mu Y, Jia D, He Y, Miao Y, Wu HL. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 2011;26(6):2948-52. DOI: 10.1016/j.bios.2010.11.042 [DOI:10.1016/j.bios.2010.11.042]
4. Minigalieva IA, Katsnelson BA, Privalova LI, Sutunkova MP, Gurvich VB, Shur VY, et al. Attenuation of combined nickel (II) oxide and manganese (II, III) oxide nanoparticles' adverse effects with a complex of bioprotectors. Int J Mol Sci 2015;16(9):22555-83. DOI: 10.3390/ijms160922555 [DOI:10.3390/ijms160922555]
5. Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 2011;83(4):510-6. DOI: 10.1016/j.chemosphere.2010.12.059 [DOI:10.1016/j.chemosphere.2010.12.059]
6. Baek YW, An YJ. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 2011;409(8):1603-8. DOI: 10.1016/j.scitotenv.2011.01.014 [DOI:10.1016/j.scitotenv.2011.01.014]
7. Horie M, Fukui H, Nishio K, Endoh S, Kato H, Fujita K, et al. Evaluation of acute oxidative stress induced by NiO nanoparticles in vivo and in vitro. J Occup Health 2011;53(2):64-74. DOI: 10.1539/joh.l10121 [DOI:10.1539/joh.L10121]
8. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008;233(3):404-10. DOI: 10.1016/j.taap.2008.09.015 [DOI:10.1016/j.taap.2008.09.015]
9. Zhan H, Suzuki T, Aizawa K, Miyagawa K, Nagai R. Ataxia telangiectasia mutated (ATM)-mediated DNA damage response in oxidative stress-induced vascular endothelial cell senescence. J Biol Chem 2010;285(38):29662-70. DOI: 10.1074/jbc.M110.125138 [DOI:10.1074/jbc.M110.125138]
10. Ahamed M, Akhtar MJ, Siddiqui MA, Ahmad J, Musarrat J, Al-Khedhairy AA, et al. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 2011;283(2-3):101-8. DOI: 10.1016/j.tox.2011.02.010 [DOI:10.1016/j.tox.2011.02.010]
11. Ahamed M. Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 2011;25(4):930-6. DOI: 10.1016/j.tiv.2011.02.015 [DOI:10.1016/j.tiv.2011.02.015]
12. Ahamed M, Akhtar MJ, Raja M, Ahmad I, Siddiqui MK, AlSalhi MS, et al. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine 2011;7(6):904-13. DOI: 10.1016/j.nano.2011.04.011 [DOI:10.1016/j.nano.2011.04.011]
13. Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 2014;226(1):28-34. DOI: 10.1016/j.toxlet.2014.01.040 [DOI:10.1016/j.toxlet.2014.01.040]
14. Saquib Q, Attia SM, Ansari SM, Al-Salim A, Faisal M, Alatar AA, et al. p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int J Biol Macromol 2017;105(Pt 1):228-37. DOI: 10.1016/j.ijbiomac.2017.07.032 [DOI:10.1016/j.ijbiomac.2017.07.032]
15. Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line. J Vis Exp 2016;108:53193. DOI: 10.3791/53193 [DOI:10.3791/53193]
16. Kovalevich J, Langford D. Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 2013;1078:9-21. DOI: 10.1007/978-1-62703-640-5_2 [DOI:10.1007/978-1-62703-640-5_2]
17. Abudayyak M, Guzel E, Özhan G. Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem Int 2017;108:7-14. DOI: 10.1016/j.neuint.2017.01.017 [DOI:10.1016/j.neuint.2017.01.017]
18. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011;731:237-45. DOI: 10.1007/978-1-61779-080-5_20 [DOI:10.1007/978-1-61779-080-5_20]
19. Kaja S, Payne AJ, Naumchuk Y, Koulen P. Quantification of lactate dehydrogenase for cell viability testing using cell lines and primary cultured astrocytes. Curr Protoc Toxicol 2017;72:2-26. DOI: 10.1002/cptx.21 [DOI:10.1002/cptx.21]
20. Butterick TA, Duffy CM, Lee RE, Billington CJ, Kotz CM, Nixon JP. Use of a caspase multiplexing assay to determine apoptosis in a hypothalamic cell model. J Vis Exp 2014;86:51305. DOI: 10.3791/51305 [DOI:10.3791/51305]
21. Alshatwi AA, Athinarayanan J, Periasamy VS, Alatiah KA. Date fruits-assisted synthesis and biocompatibility assessment of nickel oxide nanoparticles anchored onto graphene sheets for biomedical applications. Appl Biochem Biotechnol 2017;181(2):725-34. DOI: 10.1007/s12010-016-2244-z [DOI:10.1007/s12010-016-2244-z]
22. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag 2018;9:29-36. DOI: 10.1016/j.enmm.2017.11.005 [DOI:10.1016/j.enmm.2017.11.005]
23. Liu S, Zhu A, Chang X, Sun Y, Zhou H, Sun Y, et al. Role of nitrative stress in nano nickel oxide-induced lung injury in rats. Wei Sheng Yan Jiu 2016;45(4):563-7. Link
24. Chang X, Zhao H, Gao J, Chen L, Zhu A, Wang C, et al. Pulmonary toxicity of exposure to nano nickel oxide. Micro Nano Lett 2018;13(6):733-8. DOI: 10.1049/mnl.2017.0802 [DOI:10.1049/mnl.2017.0802]
25. Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016;20(1):1-11. DOI: 10.7508/ibj.2016.01.001
26. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999;144(2):281-92. DOI: 10.1083/jcb.144.2.281 [DOI:10.1083/jcb.144.2.281]
27. Helmke C, Raab M, Rödel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res 2016;26(8):914-34. DOI: 10.1038/cr.2016.78 [DOI:10.1038/cr.2016.78]
28. Abudayyak M, Guzel E, Özhan G. Nickel oxide nanoparticles induce oxidative DNA damage and apoptosis in kidney cell line (NRK-52E). Biol Trace Elem Res 2017;178(1):98-104. DOI: 10.1007/s12011-016-0892-z [DOI:10.1007/s12011-016-0892-z]
29. Zou L, Su L, Sun Y, Han A, Chang X, Zhu A, et al. Nickel sulfate induced apoptosis via activating ROS-dependent mitochondria and endoplasmic reticulum stress pathways in rat Leydig cells. Environ Toxicol 2017;32(7):1918-26. DOI: 10.1002/tox.22414 [DOI:10.1002/tox.22414]
30. Ahmad J, Alhadlaq HA, Siddiqui MA, Saquib Q, Al-Khedhairy AA, Musarrat J, et al. Concentration-dependent induction of reactive oxygen species, cell cycle arrest and apoptosis in human liver cells after nickel nanoparticles exposure. Environ Toxicol 2015;30(2):137-48. DOI: 10.1002/tox.21879 [DOI:10.1002/tox.21879]
31. Latvala S, Hedberg J, Di Bucchianico S, Möller L, Odnevall Wallinder I, Elihn K, et al. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles. PLoS One 2016;11(7):e0159684. DOI: 10.1371/journal.pone.0159684 [DOI:10.1371/journal.pone.0159684]
32. Siddiqui MA, Ahamed M, Ahmad J, Majeed Khan MA, Musarrat J, Al-Khedhairy AA, et al. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 2012;50(3-4):641-7. DOI: 10.1016/j.fct.2012.01.017 [DOI:10.1016/j.fct.2012.01.017]
33. Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 2014;226(1):28-34. DOI: 10.1016/j.toxlet.2014.01.040 [DOI:10.1016/j.toxlet.2014.01.040]
34. Duan WX, He MD, Mao L, Qian FH, Li YM, Pi HF, et al. NiO nanoparticles induce apoptosis through repressing SIRT1 in human bronchial epithelial cells. Toxicol Appl Pharmacol 2015;286(2):80-91. DOI: 10.1016/j.taap.2015.03.024 [DOI:10.1016/j.taap.2015.03.024]
35. Flamme M, Cressey PB, Lu C, Bruno PM, Eskandari A, Hemann MT, et al. Induction of necroptosis in cancer stem cells using a nickel(II)-dithiocarbamate phenanthroline complex. Chemistry 2017;23(40):9674-82. DOI: 10.1002/chem.201701837 [DOI:10.1002/chem.201701837]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb