Volume 15, Issue 7 (October 2021)                   Qom Univ Med Sci J 2021, 15(7): 482-489 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Monadi M, Motamedi H, Sanei N. The Effects of Ethanol and Methanol Extracts of Ziziphus Spina-christi, Peganum Harmala, Salvia Officinalis, and Querqus Brantii on the Growth and Biofilm Formation by Staphylococcus Aureus in Vitro. Qom Univ Med Sci J 2021; 15 (7) :482-489
URL: http://journal.muq.ac.ir/article-1-3011-en.html
1- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2- Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran , rockdigo693@gmail.com
Abstract:   (1869 Views)
Background and Objectives: Medicinal plants are one of the most important natural resources in each country. The aim of this study was to evaluate the anti-biofilm effect of ethanol and methanol extracts of Ziziphus spina-christi leaves, Peganum harmala, Salvia officinalis, and Querqus brantii on the growth and formation of biofilm by Staphylococcus aureus.
Methods: Following evaluation of the susceptibility of the studied Staphylococcus aureus strain to various antibiotics, the growth inhibitory effect of extracts on the bacterium was investigated by disc diffusion method and then the inhibitory effect of the extracts on biofilm formation was evaluated in 96 well micro-titer plates. The means were compared with ANOVA test.
Results: The results from antibacterial effect of the extracts showed that the methanol extract of Peganum harmala and Querqus brantii seeds at 350 and 450 mg/ml concentrations had a greater inhibitory effect on the growth of Staphylococcus aureus than other extracts as well as synthetic antibiotics. The results from anti-biofilm formation effect of the extracts showed that methanol extract of Salvia officinalis leaves and Querqus brantii seeds at 350 mg/ml concentration, and ethanol extract of Salvia officinalis leaves at 350 mg/ml concentration were the lowest concentrations that showed the greatest inhibitory effect on biofilm formation by Staphylococcus aureus. Other extracts inhibited biofilm formation by this bacterium in higher concentrations. The lowest anti-biofilm effect on Staphylococcus aureus was observed by ethanolic and methanolic extracts of Ziziphus spina-christi leaf.
Conclusion: The studied extracts in this study, especially the methanol extracts of Salvia officinalis leaves and Peganum harmala seeds, and ethanol extract of Salvia officinalis leaves are good solutions for S. aureus infection and biofilms formation control and are suggested that be evaluated in In vivo experiments and clinical applications.
Full-Text [PDF 4045 kb]   (625 Downloads)    
Type of Study: Original Article | Subject: طب سنتی
Received: 2020/12/16 | Accepted: 2021/09/22 | Published: 2021/10/2

References
1. 1. Klink B. Alternative medicines: is natural really better. Drug Top. 1997 Jan;141(2):99-100. Link
2. Altemimi A, Lakhssassi N, Baharlouei A, Watson D, Lightfoot D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017; 6(4): 42-65. Link [DOI:10.3390/plants6040042]
3. Torabzadeh Khorasani P, Panahi P, Sabokbar A, Mokhtari A. Antibacterial activity evaluation of Ephedra Major Host acetonic, aqueous and alcoholic extracts against standard strains of E. coli, P. aeruginosa, S. aureus and S. pyogenes. J Comp Pathobiol 2009; 6(4): 91-98. Link
4. Sivadon P, Barnier C, Urios L, Grimaud R. Biofilm formation as a microbial strategy to assimilate particulate substrates. Environ Microbiol Rep 2019; 11(6): 749-64. Link [DOI:10.1111/1758-2229.12785]
5. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011; 2(5): 445-59. Link [DOI:10.4161/viru.2.5.17724]
6. Mahdavi M, Kasra Kermanshahi R., Jalali M. The assessment of disinfectants on various bacterial biofilms. Res J Uni Isfahan "Sci" 2008; 31(2): 35-46. Link
7. Poulsen LV. Microbial biofilm in food processing. LWT-Food Sci Technol 1999; 32(6): 321-6. Link [DOI:10.1006/fstl.1999.0561]
8. Shopsin B, Kreiswirth BN. Molecular epidemiology of methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 2001 Mar;7(2):323. Link [DOI:10.3201/eid0702.010236]
9. Gladstar R. Rosemary gladstar's medicinal herbs: A beginner's guide: 33 healing herbs to know, grow, and use. USA: Storey Publishing: 2012 p. 50-212. Link
10. Panahi P, Jamzad Z, Pourmajidian M, Fallah A, Pourhashemi M, Sohrabi H. Taxonomic revision of the Quercus brantii complex (Fagaceae) in Iran with emphasis on leaf and pollen micromorphology. Acta Bot Hung 2012; 54(3-4): 355-75. Link [DOI:10.1556/ABot.54.2012.3-4.13]
11. Cunningham S. Cunningham's encyclopedia of magical herbs. USA: Llewellyn Worldwide: 1985. P. 25-67. Link
12. Nejad MS, Niroomand A. Carbohydrate content and its roles in alternate bearing in olive. Pak J Biol Sci 2007; 10(16): 2744-7. Link [DOI:10.3923/pjbs.2007.2744.2747]
13. Seyyednejad SM, Koochak H, Darabpour E, Motamedi H. A survey on Hibiscus rosa-sinensis, Alcea rosea L. and Malva neglecta Wallr as antibacterial agents. Asian Pac J Trop Dis 2010; 3(5): 351-5. Link [DOI:10.1016/S1995-7645(10)60085-5]
14. Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 2004; 53(9): 903-10. Link [DOI:10.1099/jmm.0.45637-0]
15. Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 2018; 16(7): 397. Link [DOI:10.1038/s41579-018-0019-y]
16. Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: its production and regulation. The Int Jo Art Org 2005; 28(11): 1062-8. Link [DOI:10.1177/039139880502801103]
17. Tande AJ, Patel R. Prosthetic joint infection. Clin Microbiol Rev 2014; 27(2): 302-45. Link [DOI:10.1128/CMR.00111-13]
18. Ebani VV. Biology and pathogenesis of Staphylococcus infection. Microorganisms 2020; 8(3): 383. Link [DOI:10.3390/microorganisms8030383]
19. Hoekstra J, Rutten VP, Lam TJ, Van Kessel KP, Spaninks MP, Stegeman JA, Benedictus L, Koop G. Activation of a bovine mammary epithelial cell Line by ruminant-associated Staphylococcus aureus is lineage dependent. Microorganisms. 2019; 7(12): 688. Link [DOI:10.3390/microorganisms7120688]
20. Hobby GH, Quave CL, Nelson K, Compadre CM, Beenken KE, Smeltzer MS. Quercus cerris extracts limit Staphylococcus aureus biofilm formation. J Ethnopharmacol 2012; 144(3): 812-5. Link [DOI:10.1016/j.jep.2012.10.042]
21. Shojaei Moghadam S, Maleki S, Darabpour E, Motamedi H, Nejad SM. Antibacterial activity of eight Iranian plant extracts against methicillin and cefixime restistant Staphylococcous aureus strains. Asian Pac J Trop Med 2010; 3(4): 262-5. Link [DOI:10.1016/S1995-7645(10)60063-6]
22. AL-Saadi ZN. Estimation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of cell-free extracts of Bifidobacterium species against methicillin-resistant Staphylococcus aureus in vitro. AJBLS 2016; 4(5): 75-80. Link [DOI:10.11648/j.ajbls.20160405.12]
23. Sofy AR, Aboseidah AA, El-Morsi ES, Azmy HA, Hmed AA. Evaluation of antibacterial and antibiofilm activity of new antimicrobials as an urgent need to counteract stubborn multidrug-resistant bacteria. J Pure Appl Microbiol 2020; 14(1): 595-608. Link [DOI:10.22207/JPAM.14.1.62]
24. Mohsenipour Z, Hassanshahian M. Antibacterial activity of Espand (Peganum harmala) alcoholic extracts against six pathogenic bacteria in planktonic and biofilm forms. BJM 2016; 4(16): 109-120. Link [DOI:10.5812/jjm.34701]
25. Izadi Z, Mirazi N. Identification of chemical compounds and evaluation of antioxidant and antimicrobial properties of sage (Salvia officinalis L.) essential oil at different harvest times. Qom Univ Med Sci J. 2020; 14 (9): 1-15. Link [DOI:10.52547/qums.14.9.1]
26. Mendes FS, Garcia LM, da Silva Moraes T, Casemiro LA, de Alcântara CB, Ambrósio SR, Veneziani RC, Miranda ML, Martins CH. Antibacterial activity of salvia officinalis L. against periodontopathogens: An in vitro study. Anaerobe 2020; 20: 102194. Link [DOI:10.1016/j.anaerobe.2020.102194]
27. Bahar Z, Ghotaslou R, Taheri S. In vitro anti-biofilm activity of Quercus brantii subsp. persica on human pathogenic bacteria. Res J Pharmacogn 2017; 4(1): 67-73. Link

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb