Volume 15, Issue 3 (June 2021)                   Qom Univ Med Sci J 2021, 15(3): 178-187 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

kabiri F, Aghaei S S, Pourbabaee A A, Soleimani M, Komeili Movahhed T. Manganese Mine Actinobacterial Mediated Gold Nanoparticles Synthesis and Their Antibacterial Activities. Qom Univ Med Sci J 2021; 15 (3) :178-187
URL: http://journal.muq.ac.ir/article-1-3158-en.html
1- Department of Microbiology, School of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran.
2- Department of Soil Science, Biology and Biotechnology Lab, Faculty of Agricultural Engineering and Technology, Agriculture & Natural Resources Campus, University of Tehran, Iran. , pourbabaei@ut.ac.ir
3- Department of Microbiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
4- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
Abstract:   (1537 Views)
Background and Objectives: Actinobacteria efficiently can produce different nanoparticles with various biological properties due to their ability to produce secondary metabolites. The present study aimed to examine the isolation and screening of gold nanoparticles via producing actinobacteria from the soil. We also studied their antibacterial activities.
Methods: In this study, after the isolation of actinobacteria, the accumulation of gold nanoparticles was investigated. This aim was achieved by changing the color of the reaction medium and its adsorption by UV-visible spectrophotometry. Then, for conducting confirmatory tests, ultraviolet and visible absorption spectroscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering analysis was used. Phenotypic and molecular methods were applied to study the nanoparticle-producing actinobacterium isolate. The antibacterial activity of synthesized gold was explored on pathogenic bacteria.
Results: Among the examined 35 Actinobacteria strains, one strain was biosynthesized nanoparticles; it indicated the maximum absorption at 537 nm, i.e., the characteristic of gold nanoparticles. Dynamic light scattering analysis revealed an average size of 44.4 nm. The minimum inhibitory concentration of gold nanoparticles against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus was 5.8μg/mL, 11.7μg/mL, and 11.7μg/mL, respectively. Molecular analysis data revealed that the Actinobacteria isolate was Amycolatopsis sp. KMN. The isolate Amycolatopsis sp. strain KMN presented 99.82% homology to Amycolatopsis methanolica239.
Conclusion: Overall, according to the obtained results, nanoparticles biosynthesized using Actinobacter cell extract suggested different properties, making them a suitable candidate for further research concerning nanomedicines.
 
Full-Text [PDF 1584 kb]   (619 Downloads)    
Type of Study: Original Article | Subject: میکروب شناسی
Received: 2021/04/21 | Accepted: 2021/05/20 | Published: 2021/05/31

References
1. Taniguchi N. On the basic concept of nanotechnology. Paper presented at: Proceedings of the International Conference on Production Engineering. 1974; Tokyo, Japan. https://xigywisojopumoda.allesfuersjagen.com/proceedings-of-the-international-conference-on-production-engineering-tokyo-1974-book-1144vy.php
2. Feynman RP. There's plenty of room at the bottom. Miniaturization, 1959: pp. 282-296. [Link no Found]
3. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002; 297(5586):1536-40. [DOI:10.1126/science.297.5586.1536] [PMID] [DOI:10.1126/science.297.5586.1536]
4. Pearson A, O'Mullane AP, Bansal V, Bhargava SK. Galvanic replacement mediated transformation of Ag nanospheres into dendritic Au-Ag nanostructures in the ionic liquid [BMIM][BF4]. Chem Commun. 2010; 46(5):731-3. [DOI:10.1039/B918866E] [PMID] [DOI:10.1039/B918866E]
5. Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010; 132(5):1517-9. [DOI:10.1021/ja9102698] [PMID] [DOI:10.1021/ja9102698]
6. Nassif N, Roux C, Coradin T, Bouvet OMM, Livage J. Bacteria quorum sensing in silica matrices. J Mater Chem. 2004; 14(14):2264-8. [DOI:10.1039/b403958k] [DOI:10.1039/b403958k]
7. Bansal V, Ramanathan R, Bhargava SK. Fungus-mediated biological approaches towards 'green' synthesis of oxide nanomaterials. Aust J Chem. 2011; 64(3):279-93. [DOI:10.1071/CH10343] [DOI:10.1071/CH10343]
8. Zotchev SB. Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol. 2012; 158(4):168-75. [DOI:10.1016/j.jbiotec.2011.06.002] [PMID] [DOI:10.1016/j.jbiotec.2011.06.002]
9. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. RETRACTED: Marine actinobacterial metabolites: Current status and future perspectives. Microbiol Res. 2013, 168(6):311-32. [DOI:10.1016/j.micres.2013.02.002] [PMID] [DOI:10.1016/j.micres.2013.02.002]
10. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 2014; 169(4):262-78. [DOI:10.1016/j.micres.2013.07.014] [PMID] [DOI:10.1016/j.micres.2013.07.014]
11. Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA. Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett. 2013; 93:360-2. [DOI:10.1016/j.matlet.2012.11.125] [DOI:10.1016/j.matlet.2012.11.125]
12. Farris MH, Olson JB. Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol. 2007; 45(4):376-81. [DOI:10.1111/j.1472-765X.2007.02198.x] [PMID] [DOI:10.1111/j.1472-765X.2007.02198.x]
13. Składanowski M, Wypij M, Laskowski D, Golińska P, Dahm H, Rai M. Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Cluster Sci. 2017; 28(1):59-79. [DOI:10.1007/s10876-016-1043-6] [DOI:10.1007/s10876-016-1043-6]
14. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010; 62(11):1064-79. [DOI:10.1016/j.addr.2010.07.009] [PMID] [PMCID] [DOI:10.1016/j.addr.2010.07.009]
15. Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: Technological concepts and future applications. J Nanopart Res. 2008; 10(3):507-17. [DOI:10.1007/s11051-007-9275-x] [DOI:10.1007/s11051-007-9275-x]
16. Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003; 85(2):162-70. http://repository.ias.ac.in/47133/
17. Torres-Chavolla E, Ranasinghe RJ, Alocilja EC. Characterization and functionalization of biogenic gold nanoparticles for biosensing enhancement. IEEE Trans Nanotechnol. 2010; 9(5):533-8. [DOI:10.1109/TNANO.2010.2052926] [DOI:10.1109/TNANO.2010.2052926]
18. Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK. Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol. 2015; 72:71-8. [DOI:10.1016/j.ijbiomac.2014.07.045] [PMID] [DOI:10.1016/j.ijbiomac.2014.07.045]
19. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009; 8(7):543-57. [DOI:10.1038/nmat2442] [PMID] [DOI:10.1038/nmat2442]
20. Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D. Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys. 2011; 48(5):331-5. [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb