Volume 15, Issue 10 (January 2022)                   Qom Univ Med Sci J 2022, 15(10): 718-725 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hoseinian M, Jalali Tehrani H, Ashabi G, Khalifeh S, Kheradmand A. The Effect of Maternal Morphine Addiction on Neural Plasticity of Fetal Brain in Wistar Rats. Qom Univ Med Sci J 2022; 15 (10) :718-725
URL: http://journal.muq.ac.ir/article-1-3333-en.html
1- Department of Developmental Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
2- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
3- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Amir-Almomenin Hospital, Islamic Azad University, Tehran, Iran.
4- 4. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
Abstract:   (1370 Views)
Background and Objectives: Prenatal exposure to morphine has long-lasting effects on synaptic plasticity. Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth, serves as a neurotransmitter modulator, and participates in neuronal plasticity, which is essential for cognition, learning and memory. Extracellular signal-regulated kinase (ERK) is one of the important downstream proteins of BDNF- tropomycin receptor kinase B (TrkB) signaling. Exact effect of opioids on ERK expression in the neuronal cells is still unclear. The aim of this study was to evaluate the effect of prenatal morphine exposure on BDNF and ERK protein levels in the rat fetal brain.
Methods: Pregnant rats (n=8) received increasing daily doses of morphine (0.1-0.4 mg/kg) in their drinking water. The brains of fetuses from both morphine-addicted and controls mothers were isolated at day 19 of gestation, and the levels of BDNF and p-ERK were measured using Western-blotting assay. The data presented as Mean‌±‌SEM and statistical analysis was performed by Unpaired T-test to compare between two groups.
Results: Our data revealed that the level of BDNF and p-ERK significantly decreased in the fetus’s brain of morphine addicted mothers comparing to control group.
Conclusion: Chronic exposure to morphine prenatally, could affect and diminish structural plasticity in the developing rat brain. It is probable that morphine exert this effect by reduction of BDNF level that consequently attenuate ERK phosphorylation.
Full-Text [PDF 3887 kb]   (529 Downloads)    
Type of Study: Original Article | Subject: فیزیولوژی
Received: 2021/12/7 | Accepted: 2022/02/5 | Published: 2022/01/30

References
1. Volkow ND, Morales M. The brain on drugs: From reward to addiction. Cell. 2015; 162(4):712-25. [DOI:10.1016/j.cell.2015.07.046] [PMID] [DOI:10.1016/j.cell.2015.07.046]
2. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001; 2(2):119-28. [DOI:10.1038/35053570] [PMID] [DOI:10.1038/35053570]
3. Ruffle JK. Molecular neurobiology of addiction: What's all the (Δ) FosB about? Am J Drug Alcohol Abuse. 2014; 40(6):428-37. [DOI:10.3109/00952990.2014.933840] [PMID] [DOI:10.3109/00952990.2014.933840]
4. Snyder SH. Opiate receptors in the brain. N Engl J Med. 1977; 296(5):266-71. [DOI:10.1056/NEJM197702032960511] [PMID] [DOI:10.1056/NEJM197702032960511]
5. Zarrindast M-R, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y. Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res. 2003; 965(1-2):212-21. [DOI:10.1016/S0006-8993(02)04201-4] [DOI:10.1016/S0006-8993(02)04201-4]
6. Bardo MT. Neuropharmacological mechanisms of drug reward: Beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol. 1998; 12(1-2):37-67. [DOI:10.1615/CritRevNeurobiol.v12.i1-2.30] [PMID] [DOI:10.1615/CritRevNeurobiol.v12.i1-2.30]
7. Velı́šek L, Šlamberová R, Vathy I. Prenatal morphine exposure suppresses mineralocorticoid receptor-dependent basal synaptic transmission and synaptic plasticity in the lateral perforant path in adult male rats. Brain Res Bull. 2003; 61(6):571-6. [DOI:10.1016/S0361-9230(03)00194-1] [DOI:10.1016/S0361-9230(03)00194-1]
8. Gholami A, Haeri-Rohani A, Sahraie H, Zarrindast M-R. Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur J Pharmacol. 2002; 449(3):269-77. [DOI:10.1016/S0014-2999(02)02038-1] [DOI:10.1016/S0014-2999(02)02038-1]
9. Yang SN, Liu CA, Chung MY, Huang HC, Yeh GC, Wong CS, et al. Alterations of postsynaptic density proteins in the hippocampus of rat offspring from the morphine‐addicted mother: Beneficial effect of dextromethorphan. Hippocampus. 2006; 16(6):521-30. [DOI:10.1002/hipo.20179] [PMID] [DOI:10.1002/hipo.20179]
10. Yang SN, Huang LT, Wang CL, Chen WF, Yang CH, Lin SZ, et al. Prenatal administration of morphine decreases CREBSerine‐133 phosphorylation and synaptic plasticity range mediated by glutamatergic transmission in the hippocampal CA1 area of cognitive‐deficient rat offspring. Hippocampus. 2003; 13(8):915-21. [DOI:10.1002/hipo.10137] [PMID] [DOI:10.1002/hipo.10137]
11. Ito Y, Tabata K, Makimura M, Fukuda H. Acute and chronic intracerebroventricular morphine infusions affect long-term potentiation differently in the lateral perforant path. Pharmacol Biochem Behav. 2001; 70(2-3):353-8. [DOI:10.1016/S0091-3057(01)00618-9] [DOI:10.1016/S0091-3057(01)00618-9]
12. Ahmadalipour A, Sadeghzadeh J, Vafaei AA, Bandegi AR, Mohammadkhani R, Rashidy-Pour A. Effects of environmental enrichment on behavioral deficits and alterations in hippocampal BDNF induced by prenatal exposure to morphine in juvenile rats. Neuroscience. 2015; 305:372-83. [DOI:10.1016/j.neuroscience.2015.08.015] [PMID] [DOI:10.1016/j.neuroscience.2015.08.015]
13. Nasiraei-Moghadam S, Sherafat MA, Safari M-S, Moradi F, Ahmadiani A, Dargahi L. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats. J Mol Neurosci. 2013; 50(1):58-69. [DOI:10.1007/s12031-012-9860-z] [PMID] [DOI:10.1007/s12031-012-9860-z]
14. Muller DL, Unterwald EM. In vivo regulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine. J Pharmacol Exp Ther. 2004; 310(2):774-82. [DOI:10.1124/jpet.104.066548] [PMID] [DOI:10.1124/jpet.104.066548]
15. García-Fuster M-J, Miralles A, García-Sevilla JA. Effects of opiate drugs on Fas-associated protein with death domain (FADD) and effector caspases in the rat brain: Regulation by the ERK1/2 MAP kinase pathway. Neuropsychopharmacology. 2007; 32(2):399-411. [DOI:10.1038/sj.npp.1301040] [PMID] [DOI:10.1038/sj.npp.1301040]
16. Liu Y, Wang Y, Jiang Z, Wan C, Zhou W, Wang Z. The extracellular signal-regulated kinase signaling pathway is involved in the modulation of morphine-induced reward by mPer1. Neuroscience. 2007; 146(1):265-71. [DOI:10.1016/j.neuroscience.2007.01.009] [PMID] [DOI:10.1016/j.neuroscience.2007.01.009]
17. Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, et al. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nature neuroscience. 2007;10(1):93. [DOI:10.1038/nn1812] [PMID] [DOI:10.1038/nn1812]
18. Rostami F, Oryan S, Ahmadiani A, Dargahi L. Morphine preconditioning protects against LPS-induced neuroinflammation and memory deficit. Journal of Molecular Neuroscience. 2012;48(1):22-34. [DOI:10.1007/s12031-012-9726-4] [PMID] [DOI:10.1007/s12031-012-9726-4]
19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2):248-54. [DOI:10.1016/0003-2697(76)90527-3] [DOI:10.1016/0003-2697(76)90527-3]
20. Mercadante S, Arcuri E, Santoni A. Opioid-induced tolerance and hyperalgesia. CNS Drugs. 2019; 33(10):943-55. [DOI:10.1007/s40263-019-00660-0] [PMID] [DOI:10.1007/s40263-019-00660-0]
21. Davis EP, Sandman CA. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development. 2010; 81(1):131-48. [DOI:10.1111/j.1467-8624.2009.01385.x] [PMID] [PMCID] [DOI:10.1111/j.1467-8624.2009.01385.x]
22. Chiang Y-C, Hung T-W, Lee CW-S, Yan J-Y, Ho K. Enhancement of tolerance development to morphine in rats prenatally exposed to morphine, methadone, and buprenorphine. J Biomed Sci. 2010; 17(1):1-10. [DOI:10.1186/1423-0127-17-46] [PMID] [PMCID] [DOI:10.1186/1423-0127-17-46]
23. Schneider JS, Marshall CA, Keibel L, Snyder NW, Hill MP, Brotchie JM, et al. A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson's disease. Exp Neurol. 2021; 335:113514. [DOI:10.1016/j.expneurol.2020.113514] [PMID] [PMCID] [DOI:10.1016/j.expneurol.2020.113514]
24. Guillin O, Griffon N, Bezard E, Leriche L, Diaz J, Gross C, et al. Brain-derived neurotrophic factor controls dopamine D3 receptor expression: Therapeutic implications in Parkinson's disease. Eur J Pharmacol. 2003; 480(1-3):89-95. [DOI:10.1016/j.ejphar.2003.08.096] [PMID] [DOI:10.1016/j.ejphar.2003.08.096]
25. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010; 3:1. [DOI:10.3389/neuro.02.001.2010] [PMID] [PMCID] [DOI:10.3389/neuro.02.001.2010]
26. Kibaly C, Xu C, Cahill CM, Evans CJ, Law P-Y. Non-nociceptive roles of opioids in the CNS: Opioids' effects on neurogenesis, learning, memory and affect. Nat Rev Neurosci. 2019; 20(1):5-18. [DOI:10.1038/s41583-018-0092-2] [PMID] [PMCID] [DOI:10.1038/s41583-018-0092-2]
27. Ferrer‐Alcón M, J. García‐Fuster M, La Harpe R, García‐Sevilla J. Long‐term regulation of signalling components of adenylyl cyclase and mitogen‐activated protein kinase in the pre‐frontal cortex of human opiate addicts. J Neurochem. 2004; 90(1):220-30. [DOI:10.1111/j.1471-4159.2004.02473.x] [PMID] [DOI:10.1111/j.1471-4159.2004.02473.x]
28. Berhow MT, Hiroi N, Nestler EJ. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci. 1996; 16(15):4707-15. [DOI:10.1523/JNEUROSCI.16-15-04707.1996] [PMID] [PMCID] [DOI:10.1523/JNEUROSCI.16-15-04707.1996]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Qom University of Medical Sciences Journal

Designed & Developed by : Yektaweb