1. Volkow ND, Morales M. The brain on drugs: From reward to addiction. Cell. 2015; 162(4):712-25. [DOI:10.1016/j.cell.2015.07.046] [PMID] [
DOI:10.1016/j.cell.2015.07.046]
2. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci. 2001; 2(2):119-28. [DOI:10.1038/35053570] [PMID] [
DOI:10.1038/35053570]
3. Ruffle JK. Molecular neurobiology of addiction: What's all the (Δ) FosB about? Am J Drug Alcohol Abuse. 2014; 40(6):428-37. [DOI:10.3109/00952990.2014.933840] [PMID] [
DOI:10.3109/00952990.2014.933840]
4. Snyder SH. Opiate receptors in the brain. N Engl J Med. 1977; 296(5):266-71. [DOI:10.1056/NEJM197702032960511] [PMID] [
DOI:10.1056/NEJM197702032960511]
5. Zarrindast M-R, Rezayof A, Sahraei H, Haeri-Rohani A, Rassouli Y. Involvement of dopamine D1 receptors of the central amygdala on the acquisition and expression of morphine-induced place preference in rat. Brain Res. 2003; 965(1-2):212-21. [DOI:10.1016/S0006-8993(02)04201-4] [
DOI:10.1016/S0006-8993(02)04201-4]
6. Bardo MT. Neuropharmacological mechanisms of drug reward: Beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol. 1998; 12(1-2):37-67. [DOI:10.1615/CritRevNeurobiol.v12.i1-2.30] [PMID] [
DOI:10.1615/CritRevNeurobiol.v12.i1-2.30]
7. Velı́šek L, Šlamberová R, Vathy I. Prenatal morphine exposure suppresses mineralocorticoid receptor-dependent basal synaptic transmission and synaptic plasticity in the lateral perforant path in adult male rats. Brain Res Bull. 2003; 61(6):571-6. [DOI:10.1016/S0361-9230(03)00194-1] [
DOI:10.1016/S0361-9230(03)00194-1]
8. Gholami A, Haeri-Rohani A, Sahraie H, Zarrindast M-R. Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur J Pharmacol. 2002; 449(3):269-77. [DOI:10.1016/S0014-2999(02)02038-1] [
DOI:10.1016/S0014-2999(02)02038-1]
9. Yang SN, Liu CA, Chung MY, Huang HC, Yeh GC, Wong CS, et al. Alterations of postsynaptic density proteins in the hippocampus of rat offspring from the morphine‐addicted mother: Beneficial effect of dextromethorphan. Hippocampus. 2006; 16(6):521-30. [DOI:10.1002/hipo.20179] [PMID] [
DOI:10.1002/hipo.20179]
10. Yang SN, Huang LT, Wang CL, Chen WF, Yang CH, Lin SZ, et al. Prenatal administration of morphine decreases CREBSerine‐133 phosphorylation and synaptic plasticity range mediated by glutamatergic transmission in the hippocampal CA1 area of cognitive‐deficient rat offspring. Hippocampus. 2003; 13(8):915-21. [DOI:10.1002/hipo.10137] [PMID] [
DOI:10.1002/hipo.10137]
11. Ito Y, Tabata K, Makimura M, Fukuda H. Acute and chronic intracerebroventricular morphine infusions affect long-term potentiation differently in the lateral perforant path. Pharmacol Biochem Behav. 2001; 70(2-3):353-8. [DOI:10.1016/S0091-3057(01)00618-9] [
DOI:10.1016/S0091-3057(01)00618-9]
12. Ahmadalipour A, Sadeghzadeh J, Vafaei AA, Bandegi AR, Mohammadkhani R, Rashidy-Pour A. Effects of environmental enrichment on behavioral deficits and alterations in hippocampal BDNF induced by prenatal exposure to morphine in juvenile rats. Neuroscience. 2015; 305:372-83. [DOI:10.1016/j.neuroscience.2015.08.015] [PMID] [
DOI:10.1016/j.neuroscience.2015.08.015]
13. Nasiraei-Moghadam S, Sherafat MA, Safari M-S, Moradi F, Ahmadiani A, Dargahi L. Reversal of prenatal morphine exposure-induced memory deficit in male but not female rats. J Mol Neurosci. 2013; 50(1):58-69. [DOI:10.1007/s12031-012-9860-z] [PMID] [
DOI:10.1007/s12031-012-9860-z]
14. Muller DL, Unterwald EM. In vivo regulation of extracellular signal-regulated protein kinase (ERK) and protein kinase B (Akt) phosphorylation by acute and chronic morphine. J Pharmacol Exp Ther. 2004; 310(2):774-82. [DOI:10.1124/jpet.104.066548] [PMID] [
DOI:10.1124/jpet.104.066548]
15. García-Fuster M-J, Miralles A, García-Sevilla JA. Effects of opiate drugs on Fas-associated protein with death domain (FADD) and effector caspases in the rat brain: Regulation by the ERK1/2 MAP kinase pathway. Neuropsychopharmacology. 2007; 32(2):399-411. [DOI:10.1038/sj.npp.1301040] [PMID] [
DOI:10.1038/sj.npp.1301040]
16. Liu Y, Wang Y, Jiang Z, Wan C, Zhou W, Wang Z. The extracellular signal-regulated kinase signaling pathway is involved in the modulation of morphine-induced reward by mPer1. Neuroscience. 2007; 146(1):265-71. [DOI:10.1016/j.neuroscience.2007.01.009] [PMID] [
DOI:10.1016/j.neuroscience.2007.01.009]
17. Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, et al. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nature neuroscience. 2007;10(1):93. [DOI:10.1038/nn1812] [PMID] [
DOI:10.1038/nn1812]
18. Rostami F, Oryan S, Ahmadiani A, Dargahi L. Morphine preconditioning protects against LPS-induced neuroinflammation and memory deficit. Journal of Molecular Neuroscience. 2012;48(1):22-34. [DOI:10.1007/s12031-012-9726-4] [PMID] [
DOI:10.1007/s12031-012-9726-4]
19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2):248-54. [DOI:10.1016/0003-2697(76)90527-3] [
DOI:10.1016/0003-2697(76)90527-3]
20. Mercadante S, Arcuri E, Santoni A. Opioid-induced tolerance and hyperalgesia. CNS Drugs. 2019; 33(10):943-55. [DOI:10.1007/s40263-019-00660-0] [PMID] [
DOI:10.1007/s40263-019-00660-0]
21. Davis EP, Sandman CA. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Development. 2010; 81(1):131-48. [DOI:10.1111/j.1467-8624.2009.01385.x] [PMID] [PMCID] [
DOI:10.1111/j.1467-8624.2009.01385.x]
22. Chiang Y-C, Hung T-W, Lee CW-S, Yan J-Y, Ho K. Enhancement of tolerance development to morphine in rats prenatally exposed to morphine, methadone, and buprenorphine. J Biomed Sci. 2010; 17(1):1-10. [DOI:10.1186/1423-0127-17-46] [PMID] [PMCID] [
DOI:10.1186/1423-0127-17-46]
23. Schneider JS, Marshall CA, Keibel L, Snyder NW, Hill MP, Brotchie JM, et al. A novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson's disease. Exp Neurol. 2021; 335:113514. [DOI:10.1016/j.expneurol.2020.113514] [PMID] [PMCID] [
DOI:10.1016/j.expneurol.2020.113514]
24. Guillin O, Griffon N, Bezard E, Leriche L, Diaz J, Gross C, et al. Brain-derived neurotrophic factor controls dopamine D3 receptor expression: Therapeutic implications in Parkinson's disease. Eur J Pharmacol. 2003; 480(1-3):89-95. [DOI:10.1016/j.ejphar.2003.08.096] [PMID] [
DOI:10.1016/j.ejphar.2003.08.096]
25. Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Front Mol Neurosci. 2010; 3:1. [DOI:10.3389/neuro.02.001.2010] [PMID] [PMCID] [
DOI:10.3389/neuro.02.001.2010]
26. Kibaly C, Xu C, Cahill CM, Evans CJ, Law P-Y. Non-nociceptive roles of opioids in the CNS: Opioids' effects on neurogenesis, learning, memory and affect. Nat Rev Neurosci. 2019; 20(1):5-18. [DOI:10.1038/s41583-018-0092-2] [PMID] [PMCID] [
DOI:10.1038/s41583-018-0092-2]
27. Ferrer‐Alcón M, J. García‐Fuster M, La Harpe R, García‐Sevilla J. Long‐term regulation of signalling components of adenylyl cyclase and mitogen‐activated protein kinase in the pre‐frontal cortex of human opiate addicts. J Neurochem. 2004; 90(1):220-30. [DOI:10.1111/j.1471-4159.2004.02473.x] [PMID] [
DOI:10.1111/j.1471-4159.2004.02473.x]
28. Berhow MT, Hiroi N, Nestler EJ. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci. 1996; 16(15):4707-15. [DOI:10.1523/JNEUROSCI.16-15-04707.1996] [PMID] [PMCID] [
DOI:10.1523/JNEUROSCI.16-15-04707.1996]